Although our preliminary method indicates that a reconstruction of pottery trade flows involves a lot of complications, we cannot seem to let this research topic go. One reason for this is that most archaeological attempts to study the ancient economy make interpretations about trade routes based on ceramic evidence (e.g. Abadie-Reynal 1989 ; Fulford 1989), yet none have ever attempted a networks approach. In this post we will discuss a geographical network in which distance is a significant parameter, an assumption that is not without its complications.
We believe that relative neighbourhood graphs (RNG) and Beta-skeletons might prove to be useful tools for constructing distance-based networks. Unlike other types of cluster analysis (e.g. nearest neighbour) these methods take the position of all points in account. Jiménez and Chapman (2002); discussed the archaeological application of RNG, and summarize its construction as a graph in which “the link between two points is determined by taking into account not only the proximity between the two points, but also the relative distance of each pair to the remaining points ». Lines are drawn between two neighboring points that have no other points in a region around them. By varying the size (beta) of the region of influence for each pair of points, graphs (called Beta-skeletons) can be created with different levels of connectivity: if the region is small, more relationships will be drawn between the points; if the region is large, the network will start to fall apart in smaller networks (see Fig. 1).

Of particular interest for our study is a Beta-skeleton of sites in the Eastern Mediterranean at the stage just before it starts to fall apart, so without any unconnected sub-networks (similar to the network for ‘Beta=2’ in Fig. 1). This Beta-skeleton can be analysed as a network, which will allow us to define the relative position of every site for the hypothesis “what if straight-line distance were a determining factor in the distribution of table wares?”
Such a network obviously avoids all complications but is invaluable in testing a distance-based hypothesis. For every ware in every period the number of sherds being transported from centre of production to centre of consumption can be plotted on such a Beta-skeleton (only including those sites in which the ceramics in question were found). We can easily compare the relative positions of sites in these transportation networks, as we know the influence of our basic ‘distance’ network.
To test our hypothesis that proximity is an important parameter in the distribution of table wares, we have to analyse our ceramic networks and compare them to our basic networks. If the relative position of sites weighted by the ceramic evidence is similar to sites in a ‘distance network’, we can conclude that distance played an important role in determining trade relations and thus trade routes. If there is a significant difference between ceramic and distance networks, we can conclude that distribution was influenced by other parameters, e.g. personal contacts of traders and land owners. Testing the hypothesis for 15-year periods will allow us to identify periods in which distance was more likely to be a determining factor than others.
Some of the numerous issues with this method should be listed:
• although RNG is a formidable method for cluster analysis, it still does not take into account any of the complexities that determine trade routes. Could this method be combined with a cost-surface analysis to paint a more accurate picture of regional overland trade?
• Will the ceramic evidence influence the distance network to such a degree that its basic connectivity can be altered?
• Using a Beta-skeleton as the basis for testing our hypothesis might lead us to find exactly what we were looking for (distance = significant) because it is inherent in the network. Should the Beta-skeleton be compared with a more neutral network of ceramic distribution through space?
Leave a Reply