
Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 1	

Network	structures	and	assembling	code	in	Netlogo,	Tutorial	
By	Tom	Brughmans	
First	version:	Summer	2018	
This	version	created	01/09/2018	
Netlogo	version	used:	6.0.1	
Extension	used:	nw	(pre-packaged	with	Netlogo	6.0.1)	
https://ccl.northwestern.edu/netlogo/6.0-BETA1/docs/nw.html		
Cite	this	tutorial	as:	
Brughmans,	T.	(2018).	Network	structures	and	assembling	code	in	Netlogo,	Tutorial,	
https://archaeologicalnetworks.wordpress.com/resources/#structures		.	
	

	
	 	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 2	

1. Introduction	
This	tutorial	provides	an	introduction	to	finding	and	assembling	pre-existing	code	to	quickly	
create	complex	models.	It	uses	code	and	data	linked	to	in	the	https://projectmercury.eu	
pages.	We	will	create	a	Roman	transport	network	by	reusing	existing	code	that	draws	on	the	
open	access	ORBIS	dataset	(http://orbis.stanford.edu/),	we	will	create	alternative	network	
structures	by	reusing	existing	code,	and	we	will	explore	the	impact	these	different	network	
structures	have	in	light	of	simple	economic	processes.	This	tutorial	will	reveal	the	
importance	of	not	reinventing	the	wheel,	of	searching	for	appropriate	existing	code	and	
letting	your	model	building	be	inspired	by	others’	previous	work.	

2. Conventions,	tips	and	assumed	knowledge	
This	tutorial	assumes	basic	knowledge	of	Netlogo	and	of	simulation.	It	is	recommended	to	
walk	through	the	introductory	tutorials	on	the	Netlogo	website	or	the	tutorial	on	Netlogo	
for	archaeologists	on	the	Simulating	Complexity	blog:		
https://simulatingcomplexity.files.wordpress.com/2014/07/dispersal_tutorial.pdf	
https://ccl.northwestern.edu/netlogo/docs/	
This	tutorial	will	also	refer	to	some	network	science	jargon,	concepts	and	techniques.	You	
can	get	a	basic	definition	of	all	of	these	from	the	glossary	on	my	blog:	
https://archaeologicalnetworks.wordpress.com/resources/#glossary	
Good	introductions	to	network	science	include	the	following:	

Brandes,	U.,	Robins,	G.,	McCranie,	A.,	&	Wasserman,	S.	2013.	What	is	network	
science?	Network	Science	1(01):	p.1–15.	
Newman,	M.E.J.,	2010.	Networks:	an	introduction,	Oxford:	Oxford	University	Press.	

Code	written	in	this	tutorial	will	be	formatted	as	in	the	following	example:	
breed [nodes node] 

Save	your	project!	Do	this	regularly	and	use	multiple	versions	throughout	the	tutorial	so	
that	you	can	fall	back	on	an	earlier	version	at	any	time.	I	will	remind	you	regularly	
throughout	the	tutorial	to	save	your	project.	
	

If	you	are	familiar	with	Netlogo:	skip	to	section	6!	
	 	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 3	

3. Download	and	install	Netlogo	
Netlogo	is	open	source	software	and	can	be	downloaded	free	of	charge	for	Windows,	Mac	
OS	X	and	Linux.	
Go	to	https://ccl.northwestern.edu/netlogo/download.shtml	.	
Download	the	Netlogo	installer	(this	tutorial	uses	version	6.0.1).	
Run	the	installer	and	install	Netlogo.	

4. Netlogo	resources,	manual	and	interface	
Netlogo	has	great	documentation	about	all	its	features	and	code	in	its	user	manual:	
https://ccl.northwestern.edu/netlogo/docs/		
This	manual	includes	tutorials,	a	reference	to	the	software	functions,	a	dictionary	to	its	
programming	language,	documentation	of	its	extensions	and	much	more.	
Additional	external	resources	can	be	found	on	the	resources	page:	
https://ccl.northwestern.edu/netlogo/resources.shtml		
A	detailed	reference	to	Netlogo’s	Interface	can	be	found	here:	
https://ccl.northwestern.edu/netlogo/docs/	
This	tutorial	will	only	give	a	very	brief	introduction	to	the	key	elements	of	the	Netlogo	
interface	you	will	be	using	throughout	the	tutorial.	
	 	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 4	

When	you	open	Netlogo	it	should	look	something	like	this:	

	
It	has	three	tabs:	Interface,	Info,	Code.	
The	Interface	tab	is	where	you	watch	your	model	run.	Throughout	the	tutorial	you	will	add	
buttons	and	sliders	to	control	the	variables	of	your	model,	and	you	will	add	monitors	and	
plots	to	inspect	what	your	model	is	doing.	You	can	speed	up	or	slow	down	the	simulation	
using	the	speed	slider	at	the	top	of	the	interface.	The	command	center	at	the	bottom	will	
display	messages	you	ask	the	model	to	produce,	and	you	can	also	use	it	to	give	to	
commands	to	the	model	from	the	interface	tab.	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 5	

	
The	Info	tab	is	where	you	describe	your	model	using	a	standardized	set	of	questions.	Adding	
this	information	when	you	share	your	model	with	other	is	crucial	to	enable	them	to	work	
with	your	model.	We	will	not	work	with	the	Info	tab	in	this	tutorial.	

	
The	Code	tab	is	where	you	write	and	store	the	code	for	the	model.	In	this	tutorial	we	will	be	
mainly	working	in	the	Code	tab.	A	useful	feature	is	the	Check	function	at	the	top	of	this	tab:	
click	this	to	let	Netlogo	check	your	code	for	errors.	If	it	finds	errors	then	you	will	be	guided	
to	the	error	and	asked	to	resolve	it	before	you	can	continue,	if	it	does	not	find	errors	then	
you	can	proceed	with	coding	or	viewing	your	model	in	action.	NOTE:	this	error	checker	only	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 6	

checks	whether	the	primitives	used	and	the	order	of	the	code	comply	with	the	Netlogo	rules	
(i.e.	the	code’s	vocabulary	and	grammar).	It	will	not	check	whether	the	code	does	what	you	
want	it	to	do,	so	getting	no	errors	is	no	guarantee	that	the	code	works	the	way	it	should	or	
the	way	you	think	it	does.	The	error	checker	will	always	need	to	be	used	alongside	other	
error	checking	techniques,	like	reporting	variable	values	and	checking	them	against	
expectations,	or	testing	submodels	independently.	

5. Netlogo	dictionary	
A	crucial	resource	when	coding	in	Netlogo	is	its	dictionary:	
https://ccl.northwestern.edu/netlogo/docs/		
For	this	tutorial,	you	will	find	the	section	on	‘Links’	in	the	Netlogo	dictionary	particularly	
useful,	as	well	as	the	documentation	of	the	‘nw’	extension.	
You	can	get	direct	access	(even	offline)	to	the	entry	about	a	particular	primitive	by	right-
clicking	it	and	selecting	Quick	Help.	

	

	
	 	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 7	

6. Create	a	working	folder	
Make	a	folder	on	your	computer	called	‘network_structures’.	All	code	and	data	we	will	use	
and	the	model	we	will	create	will	be	saved	in	this	folder.	When	importing	data	into	Netlogo	
models,	as	we	will	do	in	this	tutorial,	it	is	crucial	that	all	data	used	in	the	model	is	saved	in	
the	same	location	as	the	model	itself.	

7. Why	assemble	code?	
When	writing	an	academic	paper,	the	act	of	copying	entire	paragraphs	from	other	scholars’	
papers	into	your	own	paper	is	called	plagiarism.	In	software	development,	however,	it	is	
standard	practice	to	share	snippets	of	computer	code	or	entire	software	programmes,	and	
allow	colleagues	to	copy	parts	of	it	to	make	new	original	software.	This	process	allows	
software	developers	to	quickly	overcome	technical	code-related	roadblocks,	to	develop	new	
software	really	fast	and	to	build	huge	programming	resources	as	a	community	effort.	Of	
course,	it	is	also	considered	good	practice	to	reference	important	bits	of	copied	code	in	your	
own	code,	and	to	make	your	own	code	openly	accessible	to	the	community.	
	
This	tutorial	aims	to	teach	you	how	this	can	be	usefully	done	for	the	case	of	creating	agent-
based	models	of	the	Roman	economy,	by	using	resources	from	https://projectmercury.eu	.	
	
Formal	modelling	in	Roman	economy	studies	is	not	common	practice	and	the	community	of	
coders	in	this	subdiscipline	is	rather	small.	The	development	of	critical,	useful	and	more	
models	would	be	seriously	enhanced	if	code	sharing,	reuse	and	accreditation	become	more	
common	practice.	Moreover,	our	small	community	can	draw	on	the	many	resources	created	
by	other	communities	within	which	agent-based	modelling	is	more	common	practice,	such	
as	behavioural	economics	and	the	social	sciences	in	general.	Project	MERCURY	hosts	a	
model	library	listing	formal	modelling	code	in	Roman	studies,	and	a	particularly	useful	
resource	is	the	COMSES	OpenABM	repository	of	social	science	models	(which	includes	a	few	
archaeology	models	and	a	huge	number	of	economics	models):	

• https://projectmercury.eu/model-library/		
• https://www.comses.net		

	
It	is	crucial	to	realise	that	in	computational	modelling	of	Roman	economy	hypotheses	the	
aim	is	not	to	develop	100%	original	and	elegant	computationally	efficient	code.	We	are	not	
computer	scientists,	but	archaeologists	and	historians:	we	aim	to	make	appropriate	formal	
computational	representations	of	key	hypotheses	in	Roman	studies.	Being	able	to	do	this	
faster	and	more	critically	on	a	technical	level	by	drawing	on	the	resources	of	a	coding	
community	is	invaluable	in	achieving	this	aim.	It	allows	Romanists	to	focus	on	their	
expertise,	which	is	the	appropriate	representation	and	study	of	Roman	data	and	theories,	
rather	than	being	bogged	down	in	the	technicalities	of	writing	good	code.	

8. Our	hypothesis:	Roman	networks	
For	this	tutorial	we	will	study	the	following	abstract	hypothesis:	
	

The	Roman	imperial	transport	system	structured	the	flow	of	goods	in	such	a	way	
that	wealth	inequality	between	urban	communities	throughout	the	empire	was	
enforced.	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 8	

	
This	hypothesis	is	formulated	with	the	aim	of	better	understanding	the	effects	of	the	
physical	routes	connecting	urban	settlements	during	the	Roman	Empire	on	the	flow	of	
goods.	Did	some	urban	settlements	occupy	a	position	on	the	Roman	transport	system	that	
allowed	their	communities	to	access	and	aggregate	far	more	goods	than	other	
communities?	Is	this	phenomenon	of	wealth	inequality	a	particular	feature	of	the	Roman	
transport	system	structure,	or	can	other	network	structures	enforce	more	extreme	wealth	
inequality	much	faster?	
	
Because	this	is	only	a	tutorial,	we	will	not	specify	or	debate	this	hypothesis	any	further	here.	
However,	it	is	crucial	to	realise	that	in	actual	research	of	the	topic	such	hypotheses	would	
emerge	through	literature	review	and	data	analysis.	It	is	always	crucial	to	provide	
arguments	why	a	hypothesis	is	feasible	and	how	it	differs	from	other	previously	formulated	
hypotheses.	The	results	of	formal	computational	modelling	studies	of	such	hypotheses	will	
always	need	to	be	reinserted	into	these	substantive	debates,	otherwise	we	are	just	making	
computational	models	for	the	sake	of	it.	
	
For	now,	consider	this	an	interesting	hypothesis	that	lends	itself	well	to	being	explored	
through	formal	computational	modelling.	We	will	focus	the	rest	of	this	tutorial	on	how	the	
hypothesis	can	be	quickly	and	appropriately	represented	using	the	code	and	data	accessbile	
via	https://projectmercury.eu	.	

9. A	Roman	transport	network	
The	first	thing	we	need	to	do	is	identify	a	dataset	we	can	use	to	represent	the	Roman	
imperial	transport	system.	We	will	use	ORBIS,	the	Stanford	Geospatial	Network	Model	of	
the	Roman	World	(http://orbis.stanford.edu).	It	is	a	coarse-grained	representation	of	the	
major	terrestrial	and	maritime	routes	connecting	the	major	settlements	across	the	Roman	
world.	Check	out	the	ORBIS	website	if	you	want	to	learn	more	about	it,	or	read	the	following	
publications:	

• http://orbis.stanford.edu/assets/Scheidel_64.pdf		
• http://orbis.stanford.edu/assets/Scheidel_59.pdf	

	
What	is	most	crucial	for	this	tutorial	is	that	the	ORBIS	model	can	be	reused	with	
accreditation	for	research	purposes.	It	offers	a	great	starting	point	for	studies	of	the	Roman	
world	that	concern	flows	of	goods,	ideas	and	people.	
	
In	this	tutorial	we	will	use	a	network	data	representation	of	ORBIS	in	the	.graphml	format.	It	
was	created	from	the	data	made	openly	accessible	by	the	ORBIS	team,	listed	here:	
https://projectmercury.eu/datasets/#orbis		

10. Netlogo	code	implementing	ORBIS	
ORBIS	is	the	only	digital	data	representation	of	the	entire	Roman	world	during	imperial	
times	that	can	be	easily	reused	for	computational	modelling	work.	As	such,	it	has	been	
widely	used	by	Romanists,	in	particular	for	agent-based	models	coded	in	Netlogo.	There	is	
therefore	no	need	for	us	to	figure	out	from	scratch	how	to	import	the	model	into	Netlogo,	it	
would	be	much	easier	to	find	a	pre-existing	Netlogo	model	that	does	this,	critically	assess	it	
and	copy	the	relevant	code.	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 9	

	
In	this	tutorial	we	will	use	code	created	by	project	MERCURY.	Go	to	the	MERCURY	model	
library	and	navigate	to	the	mode	‘ORBIS:	importing	a	Roman	transport	system’:	
https://projectmercury.eu/model-library/		
This	will	take	you	to	the	COMSES	OpenABM	model	repository	where	this	code	archived.	
Before	downloading	this	resource,	it	is	crucial	to	check	whether	any	information	is	provided	
about	the	reuse	license.	Scroll	down	and	click	on	the	‘Details’	tab.	You	will	see	the	license	is	
specified	as	CC-BY-3.0	which	means	you	can	copy,	redistribute,	remix,	transform,	and	build	
upon	the	material	for	any	purpose:	as	long	as	you	give	appropriate	credit.	
https://creativecommons.org/licenses/by/3.0/		
	
Download	the	model:	
	

	
	
You	will	download	a	folder	which	holds	a	few	subfolders.	Copy	the	following	files	into	your	
working	folder	‘network_structures’:	

• From	the	folder	‘code’	copy	‘Roman-transport.nlogo’.	This	is	the	model	from	which	
we	will	copy	code.	

• From	the	folder	‘data’	copy	‘orbis.graphml’.	This	is	the	orbis	network	dataset	which	
is	required	as	input	data	for	the	model	to	work.	

	
Now	that	you’ve	downloaded	some	code	and	data,	it’s	time	to	put	your	academic	hat	back	
on	and	critically	assess	the	information	you	downloaded.	Open	the	model	‘Roman-
transport.nlogo’	in	Netlogo	and	familiarize	yourself	with	the	code.	Check	what	procedures	
are	included	and	how	they	work,	identify	which	procedures	you	need	to	copy	and	check	
that	there	are	no	errors,	explore	how	this	code	will	need	to	be	modified	to	work	for	your	
current	purposes.	Apply	the	same	scrutiny	to	the	downloaded	dataset	‘orbis.graphml’.	What	
source	was	the	data	derived	from,	can	it	be	reused,	how	was	it	manipulated,	does	it	
represent	the	kind	or	information	you	need?	
	
We	will	assume	for	the	sake	of	this	tutorial	that	the	code	and	data	are	appropriate	and	
useful	resources	for	making	your	own	model.	So	now	you	have	your	first	building	blocks,	
let’s	start	building	your	model!	
	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 10	

11. Copying	network	import	procedures	
Create	a	new	model	in	Netlogo	and	save	it	in	your	folder	as	‘network_structures.nlogo’.	
	
Open	the	model	‘Roman-transport.nlogo’	you	just	downloaded	in	Netlogo	(note	that	if	you	
are	working	on	a	Windows	machine	you	can	simply	open	multiple	instances	of	Netlogo	
simultaneously	to	compare	code.	However,	if	you	are	working	on	a	Mac	you	will	need	to	
have	multiple	instances	of	the	Netlogo	application	installed	in	order	to	open	multiple	
models	at	the	same	time.	To	do	this,	go	to	the	applications	folder	and	copy/paste	the	folder	
‘Netlogo	6.0.1’.	You	can	now	open	both	the	original	application	of	Netlogo	and	the	copied	
application).	
We	will	now	review	the	code	and	list	all	elements	that	we	need	for	our	own	model:	

• The	first	few	lines	from	extensions	to	turtles-own	all	list	code	that	is	required	to	
import	the	network	dataset,	so	we	will	need	to	copy	this.	

• The	setup	procedure	includes	the	actual	code	that	imports	the	dataset,	we	obviously	
need	that.	We	definitely	need	the	procedure	‘data-correction’.	We	don’t	necessarily	
need	the	procedure	‘visualise’	which	is	called	in	the	setup	procedure	and	the	code	of	
which	is	written	further	down	in	the	model,	but	it	might	be	useful	to	copy	this	
anyways	to	make	the	imported	model	look	more	comprehensible.	

• All	other	procedures	further	down	in	the	code	are	for	the	analysis	and	visualisation	
of	the	network,	and	are	therefore	not	crucial	for	our	current	aims.	

	
Copy	all	the	code	you	need	and	paste	it	into	your	new	model.	Your	model	should	now	look	
like	this:	

 
	
Save	your	model!	
	
There	should	be	no	errors	when	you	press	the	‘check’	button.	So	we	can	go	ahead	and	
modify	the	interface	of	our	model	to	check	whether	our	code	works.	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 11	

Go	to	the	Interface	tab	and	create	a	button	with	the	setup	command:	

	
	

When	you	click	the	setup	button	for	the	first	time	you	will	notice	that	all	data	is	correctly	
imported,	but	also	that	there	is	something	wrong	with	the	Netlogo	world	shown	in	the	
screen:	

	
	

This	issue	is	caused	by	us	not	having	copied	the	settings	of	world	settings	from	the	original	
model.	To	do	this	we	will	open	the	world	settings	in	both	the	old	and	new	model,	and	
ensure	they	are	the	same.	Right	click	on	the	world	in	the	old	model	and	select	edit,	do	the	
same	for	the	new	model,	and	position	the	two	side	by	side	on	your	screen:	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 12	

	
	
Modify	these	two	screens	such	that	the	settings	are	now	the	same:	
	

	
	
Click	ok	and	click	the	setup	button	again.	Your	network	should	now	be	displayed	correctly:	
	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 13	

	
	
You	have	successfully	imported	the	ORBIS	dataset!	Surely	this	was	much	faster	than	having	
to	figure	out	all	of	this	for	yourself.	Now	we	can	continue	to	add	a	simple	economic	process	
to	explore	our	hypothesis.	
	
Save	your	model!	
	

12. Trading	pots	over	the	network	
We	will	now	write	a	very	abstract	and	simple	economic	process	that	takes	place	on	this	
network.	We	are	interested	in	exploring	what	the	structuring	effect	of	the	network	is	on	
such	economic	processes.	
	
We	will	assume	each	urban	settlement	in	the	ORBIS	transport	system	is	a	market	that	
behaves	as	an	individual	economic	actor	and	can	trade	pottery	with	other	actors.	Although	
the	model	we	create	in	this	tutorial	is	so	generic	that	the	goods	could	be	called	anything,	we	
choose	to	call	them	pottery	to	illustrate	how	we	can	simulate	artificial	archaeological	data	
that	can	be	compared	with	actual	observed	archaeological	data	in	future	work.	
	
We	will	give	all	turtles	(which	is	what	the	settlements	are	called	in	our	code)	a	certain	
amount	of	pots	and	every	tick	(Netlogo	jargon	for	time	step)	all	pots	in	the	model	will	be	
considered	for	trade.	To	keep	it	simple,	we	will	just	assume	that	all	turtles	want	to	sell	the	
pots	they	own,	want	to	obtain	new	items,	and	that	a	transaction	is	successful	with	a	certain	
probability.	
	
First,	we	will	create	a	variable	for	the	turtles	called	pots	by	adding	it	at	the	top	of	the	code:	

turtles-own [ pots node-id x y modern province rank town-name ] 

	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 14	

Second,	we	will	give	all	turtles	pots	during	the	setup	procedure	by	adding	the	following	code	
at	the	end	of	the	setup	procedure	between	visualise	and	reset-ticks:	

  visualise 
  ask turtles [set pots round ( num-pots * size )] 
  reset-ticks 
end 

This	will	give	each	settlement	a	number	of	pots	proportional	to	its	rank	according	to	the	
ORBIS	dataset	(each	settlement	has	a	different	rank	of	importance	in	ORBIS	(taken	from	the	
Barrington	Atlas),	and	in	the	visuase	procedure	the	size	of	each	settlement	is	made	
proportional	to	their	rank).	
	
Note	that	we	just	mentioned	a	new	variable	called	num-pots,	so	Netlogo	will	give	us	an	error	
and	we	will	need	to	add	a	slider	to	control	this	variable	in	the	Interface	tab:	

• Select	Slider	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	slider	will	do.	
• Write	num-pots	in	the	‘Global	variable’	box,	set	the	minimum	to	0,	the	increment	to	

1,	the	maximum	to	100	and	the	value	to	50.	Click	OK.	

	
	
Now	when	you	click	the	setup	button	all	turtles	will	be	given	as	many	pots	as	defined	by	the	
variable	num-pots 
	
Third,	we	will	create	a	new	procedure	that	determines	what	processes	will	take	place	when	
the	model	runs.	So	far	we	have	restricted	ourselves	to	determining	how	the	model	is	set	up,	
and	now	we	will	determine	what	happens	after	that	for	every	tick	(time	step).	
	
Add	a	procedure	called	go	by	writing	in	your	code	below	the	setup	procedure	the	following:	

to go 
  tick 
end 

	
The	command	tick	will	increase	the	number	of	time	steps	of	the	model	by	one	every	time	
the	go	procedure	happens.	To	use	the	go	procedure	we	will	add	a	button	for	it	on	the	
Interface	tab:	

• Select	Button	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	button	will	do.	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 15	

• Write	go	in	the	‘Commands’	box	and	‘go	once’	in	the	‘Display	name’	box.	Click	OK.	

	
	
You	have	just	added	a	button	that	will	run	the	go	procedure	once	every	time	you	click	it.	If	
you	do	so,	you	will	notice	that	the	number	of	ticks	in	the	Interface	window	will	increase	by	
one	each	time.	You	might	also	want	to	create	a	second	button	that	runs	the	go	procedure	
continuously	until	you	ask	it	to	stop:	

• Select	Button	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	button	will	do.	
• Write	go	in	the	‘Commands’	box	and	‘go’	in	the	‘Display	name’	box.	Make	sure	the	

‘Forever’	box	is	ticked.	Click	OK.	

You	have	now	created	a	button	that	will	continuously	run	the	go	procedure.	
	
Fourth,	we	will	start	adding	more	interesting	trade-related	commands	to	the	go	procedure,	
beginning	with	a	count	of	the	total	number	of	pots	during	any	one	tick.	In	this	model	this	
sum	will	be	the	same	for	every	tick	within	a	single	setup,	but	we	will	add	this	sum	in	case	
you	decide	to	modify	the	model	by	allowing	pots	to	be	added	or	removed	from	the	model.	
Write	the	following	in	the	go	procedure	before	tick:	

let total-pots sum [pots] of turtles 

	
Fifth,	now	that	we	know	how	many	pots	there	are	in	this	tick	we	can	repeat	trade	as	many	
times	as	there	are	pots	by	adding	the	following	code	in	the	go	procedure	immediately	after	
the	sum	of	all	pots:	

  repeat total-pots 
  [ 
  ] 

Every	command	that	we	now	add	within	these	brackets	will	be	repeated	as	many	times	as	
there	are	pots	at	the	start	of	that	tick.	
	
Sixth,	we	will	randomly	select	a	turtle	which	has	at	least	one	pot,	i.e.	a	turtle	that	can	trade:	

  repeat total-pots 
  [ 
    ask one-of turtles with [pots > 0] 
      [] 
  ] 

	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 16	

Seventh,	we	will	ask	this	node	to	perform	a	transaction	(sell	a	pot	to	another	node	it	is	
connected	to)	with	a	certain	probability.	We	will	use	the	same	technique	as	we	used	earlier	
for	implementing	probability:	checking	whether	a	randomly	selected	number	is	higher	or	
lower	than	a	variable	representing	the	trade	probability.	Add	the	following	to	the	ask	
command	we	just	wrote:	

    ask one-of turtles with [pots > 0] 
      [if random-float 1 < trade-probability 
        [] 
      ] 

This	code	will	perform	an	action	only	if	a	randomly	selected	floating	point	number	between	
0	and	1	is	smaller	than	the	value	we	set	for	the	variable	trade-probability.	Let’s	create	a	
slider	for	this	new	variable	in	the	Interface	tab:	

• Select	Slider	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	slider	will	do.	
• Write	trade-probability	in	the	‘Global	variable’	box,	set	the	minimum	to	0,	the	

increment	to	0.05,	the	maximum	to	1	and	the	default	value	to	0.5.	Click	OK.	

	
	
Finally,	we	will	add	the	transaction	that	will	take	place	if	a	randomly	selected	number	is	
lower	than	the	threshold	determined	by	the	trade-probability	variable.	Add	the	following	
to	the	if	command	we	just	wrote:	

    [if random-float 1 < trade-probability  
      [set pots pots - 1  
        ask one-of route-neighbors  
        [set pots pots + 1] 
      ] 
    ] 

This	code	will	perform	a	transaction	by	first	reducing	the	number	of	pots	of	the	seller	(the	
randomly	selected	turtle),	then	it	will	randomly	select	one	of	the	other	turtles	this	node	is	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 17	

connected	to	(this	second	turtle	becomes	the	buyer),	and	finally	it	will	increase	the	number	
of	pots	the	buyer	owns	by	1.	
Your	complete	go	procedure	should	now	look	like	this:	

to go 
  let total-pots sum [pots] of turtles 
  repeat total-pots 
  [ 
    ask one-of turtles with [pots > 0] 
    [if random-float 1 < trade-probability 
      [set pots pots - 1 
        ask one-of route-neighbors  
        [set pots pots + 1] 
      ] 
    ] 
  ] 
  tick 
end 

	
Save	your	model!	
	
At	the	moment	we	cannot	explore	the	trade	procedure	we	just	created	very	easily,	because	
we	do	not	have	anything	that	reports	its	effects.	Let’s	add	a	plot	that	tells	us	something	
about	the	trade	processes.	
	
One	of	the	most	interesting	things	to	explore	would	be	to	see	how	many	pots	each	turtle	
has:	the	distribution	of	pots.	We	will	create	a	plot	that	shows	us	this	in	the	Interface	tab:	

• Select	Plot	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	Plot	will	do.	
• Write	‘Distribution	of	pots’	in	the	‘name’	box.	
• Click	on	the	yellow	pencil	to	modify	the	‘default	pen’.	A	new	window	will	open	

where	you	can	determine	what	this	pen	will	plot.	
• Set	the	‘Mode’	dropdown	box	to	‘Bar’,	set	the	‘Interval’	to	1.0,	and	write	the	

following	code	in	the	‘Pen	update	commands’	box:		
let max-pots max [pots] of turtles 
set-plot-x-range 0 (max-pots + 1) 
histogram [pots] of turtles 

• Click	OK	twice.	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 18	

	
This	plot	will	create	a	histogram,	displaying	the	distribution	of	pots	among	turtles.	On	the	X	
axis	we	see	the	number	of	pots,	and	on	the	Y	axis	we	see	the	number	of	turtles	that	own	a	
certain	number	of	pots.	
	
Finally,	we	will	add	another	way	of	visualising	the	differences	in	the	number	of	pots	that	
different	turtles	own	by	updating	the	size	of	turtles	relative	to	the	number	of	pots	they	own.	
	
At	the	end	of	the	go	procedure,	just	before	tick,	we	will	call	a	new	procedure	update-size:	

… 
  ] 
  update-size 
  tick 
end 

	
At	the	end	of	all	the	code	we	will	specify	what	this	new	procedure	does.	Copy	and	paste	the	
following:	

to update-size 
  let max-pots [pots] of one-of turtles with-max [pots] 
  ask turtles 
  [ 
    set size ( pots / max-pots ) * 3 
  ] 
  ask one-of turtles with-max [pots] [ show town-name ] 
end 

	
This	procedure	will	change	the	size	of	each	settlement	at	the	end	of	each	time	step,	making	
the	settlements	with	a	lot	of	pots	larger	and	the	settlements	with	few	pots	smaller.	The	
settlement	with	the	highest	number	of	pots	will	be	displayed	in	the	command	centre	at	the	
bottom	of	the	screen.	
	
Save	your	model!	
	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 19	

13. The	effect	of	the	Roman	transport	system	on	wealth	inequality	
Now	we	can	finally	start	exploring	the	first	aspect	of	our	hypothesis:	the	effect	of	the	Roman	
transport	network	on	the	distribution	of	wealth	(as	represented	by	our	simple	process	of	
trade	in	pots).	
	
Setup	your	model	and	let	it	run	for	a	few	time	steps.	Explore	how	the	plot	of	pot	distribution	
and	the	size	of	settlements	changes.	Try	changing	the	sliders	and	setting	up	and	running	the	
model	again.	How	do	the	distributions	and	settlement	sizes	change	over	time?	What	is	the	
effect	of	the	trade-probability	variable?	What	is	the	effect	of	the	num-pots	variable?	Is	
there	strong	inequality	in	the	distribution	of	pots?	
	
Try	to	identify	how	a	settlement’s	“wealth”	in	pots	correlates	with	its	rank	and	its	number	of	
connections	in	the	ORBIS	network.	
	

14. Other	network	structures	
There	is	an	aspect	of	our	hypothesis	that	we	cannot	address	with	our	current	model:	
Is	the	phenomenon	of	wealth	inequality	a	particular	feature	of	the	Roman	transport	system	
structure,	or	can	other	network	structures	enforce	more	extreme	wealth	inequality	much	
faster?	
	
To	explore	this	question,	and	to	see	how	wealth	inequality	does	or	does	not	arise	depending	
on	network	structure,	we	will	again	search	for	pre-existing	code	that	allows	us	to	create	
different	network	structures	in	our	model.	Luckily,	such	code	is	available	via	the	project	
MERCURY	website.	
	
Navigate	to	the	MERCURY	model	library	and	follow	the	links	to	the	‘Network	structures’	
tutorial:	
https://projectmercury.eu/model-library/		
Click	‘Download’	and	from	the	‘code’	folder	inside	the	downloaded	folder	copy	the	model	
‘network-structures.nlogo’	and	paste	it	into	your	working	folder	‘network_structures’.	
	
Open	the	model	you	just	downloaded.	This	model	simply	allows	you	to	create	a	set	of	nodes	
and	connect	them	according	to	a	particular	network	structure	(see	the	network	science	
glossary	for	more	information	about	the	different	types	of	networks	
https://archaeologicalnetworks.wordpress.com/resources/#glossary	).	Let’s	have	a	look	at	
the	different	procedures	to	identify	what	we	need	to	copy	and	what	not:	

• The	create-new-network	procedure	will	create	a	completely	new	set	of	nodes	and	
connect	them	with	a	new	set	of	links	according	to	8	different	types	of	network	
structure.	Because	we	do	not	want	to	change	the	set	of	nodes	(the	settlements	in	
the	ORBIS	network)	we	will	not	use	this	procedure.	

• The	same-nodes/new-links procedure	will	keep	the	existing	set	of	nodes	in	the	
model	and	connect	them	with	a	new	set	of	links	according	to	four	different	network	
structures.	Because	we	want	to	keep	the	ORBIS	nodes	we	can	use	the	code	in	this	
procedure.	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 20	

• The	remaining	code	is	used	to	change	the	visual	layout	of	the	network	and	to	report	
statistical	network	properties.	We	will	not	copy	this	code.	

	
Copy	the	entire	same-nodes/new-links	procedure	and	paste	it	into	your	own	model	at	the	
very	end.	
	
Now	we	need	to	iron	out	a	few	issues	to	ensure	this	new	code	works	with	our	current	
model.	What	we	want	to	achieve	is	that	when	we	setup	the	model,	it	either	shows	us	the	
ORBIS	network	or	an	alternative	network	structure	that	we	select.	
	
First,	let’s	change	the	name	of	this	procedure	to	something	more	descriptive	and	
appropriate	for	our	own	model.	Replace	to same-nodes/new-links	for	to alternative-
network.	
	
Second,	to	use	this	new	procedure	we	can	include	it	in	the	setup	procedure	just	before	
reset-ticks:	

  ask turtles [set pots round ( num-pots * size )] 
  alternative-network 
  reset-ticks 
end 

	
Third,	we	should	change	the	variable	existing-network-structure	into	something	more	
appropriate	for	our	own	model.	Go	to	the	alternative-network	procedure	in	your	code	and	
change	every	existing-network-structure	to	the	following	new	variable:	network-structure	
	
Fourth,	we	need	to	create	this	new	variable	network-structure	in	the	interface	of	our	
model.	It	will	take	the	form	of	a	drop-down	window	that	allows	us	to	select	what	network	
structure	we	want	to	create	for	a	given	experiment.	Go	to	the	interface	tab	(ignore	all	error	
warnings)	and	add	a	chooser	drop-down	window	to	the	interface	for	the	global	variable	
network-structure	with	the	following	five	choices:	

“ORBIS” 
“nearest neighbour” 
“random” 
“star” 
“circular” 

	
	
Now	that	we	have	made	the	necessary	changes	to	incorporate	the	copied	code	into	our	own	
model,	we	can	turn	our	attention	to	the	remaining	error	messages.	

• Nothing	named	nearest-neighbours	exists.	This	is	a	variable	that	is	needed	for	
creating	the	“nearest	neighbour”	network	structure	(it	determines	to	how	many	of	a	
nodes	nearest	neighbours	each	node	is	connected).	Go	to	the	interface	and	add	a	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 21	

slider	for	the	variable	nearest-neighbours	with	a	minimum	of	1	and	a	maximum	of	
10,	an	increment	of	1	and	a	default	value	of	3.	

• Nothing	named	probability	exists.	This	is	a	variable	needed	for	the	“random”	
network	structure	(it	determines	the	probability	with	which	a	link	is	created	
between	a	pair	of	nodes).	Go	to	the	interface	and	add	a	slider	for	the	variable	
probability	with	a	minimum	of	0	and	a	maximum	of	0.3,	an	increment	of	0.01	and	a	
default	value	of	0.01.	

	
Once	you	made	these	changes	the	model	does	not	report	any	errors	any	more.	Put	this	to	
the	test	by	clicking	the	setup	button	and	changing	the	setting	of	the	network-structure	
variable.	Can	you	create	each	of	the	five	different	network	structures	correctly?	
	
In	fact,	there	is	still	one	issue	we	need	to	iron	out.	If	you	click	the	go	button,	you	will	get	an	
error	because	our	links	are	no	longer	known	as	routes	(the	breed	we	needed	to	import	the	
ORBIS	network)	but	they	are	now	called	links.	To	solve	this	issue,	change	“route”	in	the	go	
procedure	to	“link”:	

to go 
  let total-pots sum [pots] of turtles 
  repeat total-pots 
  [ 
    ask one-of turtles with [pots > 0] 
    [if random-float 1 < trade-probability 
      [set pots pots - 1 
        ask one-of link-neighbors 
        [set pots pots + 1] 
      ] 
    ] 
  ] 
  update-size 
  tick 
end 

	
Save	your	model!	
	
Your	setup	procedure	should	now	look	like	this:	

	
	
Your	alternative-network	procedure	should	now	look	like	this:	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 22	

	
	
Your	interface	should	now	look	more	or	less	like	this:	

	



Network	structures	and	assembling	code	in	Netlogo	 	 version	01-09-2018	

	 23	

15. Network	structures	and	wealth	inequality	
Now	we	can	explore	the	second	part	of	our	hypothesis:	to	what	extent	is	the	effect	of	
wealth	inequality	a	result	of	the	transport	network	structure?	
	
First	explore	the	distribution	of	pots	and	the	top	scoring	settlements	when	only	using	the	
ORBIS	network.	Then	start	exploring	in	turn	the	other	four	network	structures.	Try	
identifying	the	differences	for	the	distribution	of	pots	for	each	network	structure	using	the	
following	questions:	

• Are	pots	distributed	very	unequally?	
• With	what	network	structure	is	the	distribution	of	pots	most	unequal?	
• With	what	network	structure	is	the	inequality	of	pot	distributions	at	its	most	

extreme?	
• With	what	network	structures	does	it	take	more	time	steps	to	obtain	very	strong	

inequalities	in	pot	distributions?	
• Are	pots	ever	normally	distributed?	Can	you	identify	conditions	under	which	you	can	

generate	non-extreme	wealth	inequalities?	
	
You	will	notice	that	most	of	the	alternative	network	structures	do	not	make	any	sense	in	
real	terms:	they	blatantly	ignore	geographical	reality	and	known	socio-political	realities	of	
the	Roman	world.	However,	it	is	crucial	to	keep	in	mind	that	they	do	so	in	a	very	productive	
way.	They	represent	alternative	ways	in	which	transactions	between	urban	settlements	in	
the	Roman	world	could	have	taken	place.	What	if	every	place	was	only	connected	to	two	
other	places	(circular	structure)?	What	if	these	places	were	the	geographically	closest	towns	
(nearest	neighbour	structure)?	What	if	all	trade	had	to	take	place	through	one	single	urban	
settlement	(star	structure)?	What	if	interaction	opportunities	of	a	pair	of	settlements	was	
entirely	a	result	of	chance	(random	structure)?	
	
Obviously	these	network	structures	represent	extreme	alternative	scenarios,	they	have	
nothing	to	do	with	the	Roman	reality.	It	is	very	clear	that	the	precise	number	of	simulated	
pots	at	particular	sites	like	Rhodes	or	Rome	is	not	informative	at	all.	But	what	is	informative	
is	the	general	trends	that	recur	between	different	setups	of	a	simulation	experiment:	is	one	
town	always	the	most	wealthy	or	does	it	share	this	position	with	a	handful	of	others;	is	the	
wealthiest	town	10	times	wealthier	than	the	majority	or	1000	times?	As	extreme	theoretical	
scenarios,	these	alternative	network	structures	help	us	outline	the	realm	of	possible	past	
realities.	Most	crucially,	they	help	us	to	narrow	down	where	we	should	position	credible	
theories	of	a	Roman	phenomenon	by	comparing	simulated	data	patterns	with	observed	
data	patterns.	How	close	are	the	archaeologically	and	historically	observable	information	to	
the	artificial	information	that	results	from	these	extreme	scenarios?	


