
Network	Science	with	Netlogo	 	 version	13/09/2018	
	

1	

Network	Science	with	Netlogo	Tutorial	
By	Tom	Brughmans	

First	version:	March	2016	

This	version	created	13/09/2018	

Netlogo	version	used:	6.0.1	

Extension	used:	nw	(pre-packaged	with	Netlogo	6.0.1)	
https://github.com/NetLogo/NW-Extension		

Cite	this	tutorial	as:	

Brughmans,	T.	(2016).	Network	Science	with	Netlogo	Tutorial,	
https://archaeologicalnetworks.wordpress.com/resources/#netlogo		.	

	

	
	 	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

2	

1. Introduction	
This	tutorial	provides	an	introduction	to	creating	agent-based	network	models	with	Netlogo.	
By	working	through	this	tutorial	you	will	learn	how	to	create	nodes,	create	edges,	perform	
layouts	introduce	probability	in	edge	creation,	create	a	trade	process	working	on	the	
network	and	how	to	derive	network	measures.	

2. Conventions,	tips	and	assumed	knowledge	
This	tutorial	assumes	basic	knowledge	of	Netlogo	and	of	simulation.	It	is	recommended	to	
walk	through	the	introductory	tutorials	on	the	Netlogo	website	or	the	tutorial	on	Netlogo	
for	archaeologists	on	the	Simulating	Complexity	blog:		

https://simulatingcomplexity.files.wordpress.com/2014/07/dispersal_tutorial.pdf	

https://ccl.northwestern.edu/netlogo/docs/	

This	tutorial	will	also	refer	to	some	network	science	jargon,	concepts	and	techniques.	You	
can	get	a	basic	definition	of	all	of	these	from	the	glossary	on	my	blog:	

https://archaeologicalnetworks.wordpress.com/resources/#glossary	

Good	introductions	to	network	science	include	the	following:	

Brandes,	U.,	Robins,	G.,	McCranie,	A.,	&	Wasserman,	S.	2013.	What	is	network	
science?	Network	Science	1(01):	p.1–15.	

Newman,	M.E.J.,	2010.	Networks:	an	introduction,	Oxford:	Oxford	University	Press.	

Code	written	in	this	tutorial	will	be	formatted	as	in	the	following	example:	
breed [nodes node]

Save	your	project!	Do	this	regularly	and	use	multiple	versions	throughout	the	tutorial	so	
that	you	can	fall	back	on	an	earlier	version	at	any	time.	I	will	remind	you	regularly	
throughout	the	tutorial	to	save	your	project.	

	 	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

3	

3. Download	and	install	Netlogo	
Netlogo	is	open	source	software	and	can	be	downloaded	free	of	charge	for	Windows,	Mac	
OS	X	and	Linux.	

Go	to	https://ccl.northwestern.edu/netlogo/download.shtml	.	

Download	the	Netlogo	installer	(this	tutorial	uses	version	6.0.1).	

Run	the	installer	and	install	Netlogo.	

4. Netlogo	resources,	manual	and	interface	
Netlogo	has	great	documentation	about	all	its	features	and	code	in	its	user	manual:	
https://ccl.northwestern.edu/netlogo/docs/		

This	manual	includes	tutorials,	a	reference	to	the	software	functions,	a	dictionary	to	its	
programming	language,	documentation	of	its	extensions	and	much	more.	

Additional	external	resources	can	be	found	on	the	resources	page:	

https://ccl.northwestern.edu/netlogo/resources.shtml		

A	detailed	reference	to	Netlogo’s	Interface	can	be	found	here:	
https://ccl.northwestern.edu/netlogo/docs/	

This	tutorial	will	only	give	a	very	brief	introduction	to	the	key	elements	of	the	Netlogo	
interface	you	will	be	using	throughout	the	tutorial.	

	 	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

4	

When	you	open	Netlogo	it	should	look	something	like	this:	

	
It	has	three	tabs:	Interface,	Info,	Code.	

The	Interface	tab	is	where	you	watch	your	model	run.	Throughout	the	tutorial	you	will	add	
buttons	and	sliders	to	control	the	variables	of	your	model,	and	you	will	add	monitors	and	
plots	to	inspect	what	your	model	is	doing.	You	can	speed	up	or	slow	down	the	simulation	
using	the	speed	slider	at	the	top	of	the	interface.	The	command	center	at	the	bottom	will	
display	messages	you	ask	the	model	to	produce,	and	you	can	also	use	it	to	give	to	
commands	to	the	model	from	the	interface	tab.	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

5	

	
The	Info	tab	is	where	you	describe	your	model	using	a	standardized	set	of	questions.	Adding	
this	information	when	you	share	your	model	with	other	is	crucial	to	enable	them	to	work	
with	your	model.	We	will	not	work	with	the	Info	tab	in	this	tutorial.	

	
The	Code	tab	is	where	you	write	and	store	the	code	for	the	model.	In	this	tutorial	we	will	be	
mainly	working	in	the	Code	tab.	A	useful	feature	is	the	Check	function	at	the	top	of	this	tab:	
click	this	to	let	Netlogo	check	your	code	for	errors.	If	it	finds	errors	then	you	will	be	guided	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

6	

to	the	error	and	asked	to	resolve	it	before	you	can	continue,	if	it	does	not	find	errors	then	
you	can	proceed	with	coding	or	viewing	your	model	in	action.	NOTE:	this	error	checker	only	
checks	whether	the	primitives	used	and	the	order	of	the	code	comply	with	the	Netlogo	rules	
(i.e.	the	code’s	vocabulary	and	grammar).	It	will	not	check	whether	the	code	does	what	you	
want	it	to	do,	so	getting	no	errors	is	no	guarantee	that	the	code	works	the	way	it	should	or	
the	way	you	think	it	does.	The	error	checker	will	always	need	to	be	used	alongside	other	
error	checking	techniques,	like	reporting	variable	values	and	checking	them	against	
expectations,	or	testing	submodels	independently.	

5. Netlogo	dictionary	
A	crucial	resource	when	coding	in	Netlogo	is	its	dictionary:	
https://ccl.northwestern.edu/netlogo/docs/		

For	this	tutorial,	you	will	find	the	section	on	‘Links’	in	the	Netlogo	dictionary	particularly	
useful,	as	well	as	the	documentation	of	the	‘nw’	extension.	

You	can	get	direct	access	(even	offline)	to	the	entry	about	a	particular	primitive	by	right-
clicking	it	and	selecting	Quick	Help.	

	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

7	

	

6. Create	nodes	
Networks	consist	of	at	least	two	things:	a	set	of	nodes	and	a	set	of	edges	(network	science	
jargon	for	an	undirected	relationship).	Nodes	and	edges	in	Netlogo	are	a	type	of	agents,	or	
turtles	in	Netlogo	jargon.	We	will	first	create	the	nodes	in	Netlogo.	

To	avoid	using	the	confusing	term	‘turtles’	to	refer	to	our	nodes,	we	will	create	a	new	breed	
of	agents	called	‘nodes’.	A	breed	is	a	set	of	agents	that	is	given	a	specific	name	and	can	be	
commanded	using	specific	variables	given	to	this	agentset.	

To	create	a	breed,	write	at	the	top	of	the	Code	tab:	
breed [nodes node]

If	you	click	the	check	box	now	you	will	notice	that	there	are	no	errors,	so	we	can	continue	to	
code.	

Save	your	model!	

To	create	a	number	of	nodes	and	visualise	them	in	the	Interface	we	will	create	a	setup	
procedure.	Add	the	following	below	the	breed	command	in	the	Code	tab:	

to setup
 clear-all
 reset-ticks
end

This	is	a	standard	setup	procedure	in	Netlogo	that	resets	the	Netlogo	interface	of	any	
settings	from	previous	simulations	and	resets	the	ticks	to	0	to	initiate	a	new	simulation	
(Netlogo	jargon	for	a	timestep).	Setting	up	a	simulation	means	we	are	ready	to	run	the	
simulation.	

Now	we	will	add	commands	to	this	standard	setup	procedure	to	create	our	nodes.	Expand	
the	procedure	to	the	following:	

to setup
 clear-all
 set-default-shape nodes "circle"
 create-nodes 50
 reset-ticks
end

Our	setup	procedure	will	now	create	50	nodes,	and	they	will	be	represented	as	circles.	To	
see	this	in	action,	we	will	need	to	add	a	button	in	the	Interface	tab.	Do	the	following	in	the	
Interface	tab:	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

8	

• Make	sure	the	drop	down	box	next	to	the	green	plus	sign	has	‘Button’	selected.	
• Click	the	green	plus	sign	called	‘Add’	(see	figure	below).	Your	cursor	will	become	a	

big	plus	sign.	
• Click	anywhere	in	the	white	space	next	to	the	black	interface	window.	A	button	will	

appear	and	a	new	window	will	open	where	you	can	determine	what	this	button	will	
be	used	for.	

• Write	setup	in	the	commands	box	of	this	new	window	and	click	OK	(see	figure	
below).	

	

	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

9	

You	just	created	a	button	called	‘setup’.	When	you	press	this	button	the	setup	procedure	we	
wrote	in	the	Code	tab	will	be	executed.	Try	it!	

You	will	see	a	circle	being	created	at	the	very	centre	of	the	interface	window.	Although	it	
looks	like	a	single	node,	we	have	actually	created	50	nodes	that	are	all	placed	on	top	of	each	
other	in	the	centre	of	the	window,	because	we	did	not	specify	where	they	should	be	placed.	
Right-click	the	node	and	you	will	notice	there	are	50	overlapping	nodes	as	in	this	figure:	

	
We	will	solve	this	issue	of	node	placement	soon,	but	first	we	should	give	ourselves	more	
control	over	the	number	of	nodes.	Now	we	have	‘hard-coded’	the	number	of	nodes	in	our	
Code	tab,	which	makes	it	a	lot	of	work	to	change	the	number	of	nodes	when	exploring	our	
final	model	and	running	simulation	experiments.	

To	overcome	this	issue	we	will	now	add	a	variable	that	controls	the	number	of	nodes.	In	the	
Code	tab,	replace	create-nodes 50	with:	

create-nodes num-nodes

We	have	now	create	a	variable	called	num-nodes	which	will	determine	how	many	nodes	are	
created	by	create-nodes.	When	you	click	the	error	checker,	you	will	notice	that	Netlogo	has	
found	an	error:	“Nothing	named	NUM-NODES	has	been	defined”.	This	is	because	we	have	
written	a	variable	that	has	not	been	defined	earlier	in	the	code	or	on	the	interface.	We	want	
to	control	the	variable	in	the	interface	with	a	slider	so	that	we	can	easily	change	it	when	
running	our	simulation.	

To	overcome	this	error	and	control	this	variable	in	the	Interface	tab	do	the	following:	

• Click	the	dropdown	menu	next	to	the	‘Add’	button.	
• Select	‘Slider’.	Your	cursor	will	change	into	a	large	plus	sign.	
• Click	in	the	white	space	below	the	‘setup’	button.	A	slider	will	be	created	and	a	new	

window	will	open	where	you	can	determine	what	this	slider	will	be	used	for.	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

10	

• We	will	use	this	slider	to	control	the	variable	num-nodes,	so	write	num-nodes	in	the	
box	‘global	variable’.	Set	the	‘minimum’	to	2	and	click	OK	(see	figure	below).	

	
You	have	now	created	a	slider	where	you	can	modify	how	many	nodes	you	create.	You	will	
also	notice	that	the	error	message	on	the	code	tab	no	longer	appears.	

But	the	nodes	are	still	overlapping,	so	let’s	take	care	of	that	right	now!	

Save	your	model!	

7. Circular	layout	
You	can	place	your	nodes	in	many	different	ways	depending	on	what	feature	of	the	network	
you	wish	to	emphasise,	as	we	will	see	later	in	the	tutorial.	But	since	we	only	have	nodes	and	
no	edges	yet,	let’s	just	place	all	nodes	along	a	circular	layout	to	avoid	overlapping	nodes.	

In	the	Code	tab	add	the	following	after	the	line	creating	the	nodes:	
layout-circle nodes 10

We	have	used	a	Netlogo	command	that	positions	nodes	along	a	circle	with	a	radius	of	10	in	
a	random	order.	If	you	go	to	the	Interface	tab	now	and	click	the	setup	button	then	your	
nodes	will	be	positioned	along	a	circle	as	in	this	figure:	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

11	

	
However,	you	might	want	more	control	over	the	order	in	which	the	nodes	are	placed,	and	
not	just	let	them	be	placed	in	a	random	order.	To	achieve	this,	rework	the	layout	line	in	the	
Code	tab	to	read	like	this:	

layout-circle sort nodes 10

If	you	click	the	setup	button	in	the	Interface	tab	now,	you	will	get	a	circular	positioning	of	all	
nodes,	but	they	are	ordered	according	to	their	‘Who’	number	(the	unique	ID	of	a	turtle	
assigned	by	Netlogo	when	it	is	created)	clockwise	starting	from	the	top	middle	node	in	the	
circle.	You	can	check	this	by	right	clicking	the	nodes	in	order	and	you	will	notice	that	the	
order	of	nodes	is	0,	1,	2,	3,	….	(see	figure	below).	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

12	

	
However,	once	again	we	hard-coded	something	that	is	not	very	flexible	if	the	model	
environment	changes:	the	circle	radius	of	10.	It	would	be	far	better	if	this	radius	was	defined	
by	the	resolution	of	the	interface	window	(i.e.	the	model’s	‘World’	settings	expressed	in	
coordinates,	which	can	be	viewed	by	right-clicking	the	interface	window	and	selecting	
‘Edit’).	

In	the	Code	tab	change	the	layout	line	to	the	following:	
layout-circle sort nodes max-pxcor - 1

When	you	click	the	setup	button	now	on	the	Interface	tab	the	circular	layout	will	have	a	
radius	equal	to	the	radius	of	the	interface	window	(i.e.	the	World’s	max-pxcor)	minus	1	to	
prevent	it	from	being	too	close	to	the	edges	of	the	window:	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

13	

	
Save	your	model!	

8. Network	creation	procedures:	why	do	you	create	a	network	
model?	

Now	that	we	have	a	set	of	nodes	we	can	create	a	set	of	edges	connecting	the	nodes.	

The	way	in	which	nodes	are	connected	into	a	network	will	depend	on	your	research	context,	
and	ultimately	will	be	rooted	in	your	reasons	for	deciding	to	build	a	network	model	in	the	
first	place.	Edges	could	be	randomly	connected,	edges	can	be	informed	by	empirical	
observations,	or	the	network	structure	could	represent	a	hypothesised	social/spatial/other	
network	structure.	

In	this	tutorial	we	will	randomly	create	a	network	structure,	using	the	Erdős–Rényi	random	
graph	model	(from	now	on	referred	to	as	ER	model):	a	network	constructed	by	connecting	
randomly	selected	pairs	of	nodes	with	a	certain	probability	independent	from	every	other	
edge.	https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model		

This	is	the	most	common	way	of	randomly	creating	networks.	Such	networks	are	very	useful	
for	comparison	with	hypothesised	social	processes,	i.e.	processes	creating	edges	with	
probabilities	dependent	on	the	existence	of	other	edges.	For	example,	a	common	
hypothesis	for	social	networks	of	friendship	is	the	idea	that	a	pair	of	unrelated	individuals	
has	a	higher	probability	of	becoming	friends	(i.e.	of	creating	an	edge	between	a	pair	of	
nodes)	if	they	have	a	friend	in	common	(i.e.	the	probability	of	the	new	edge	is	dependent	on	
the	existence	of	other	edges).	Nodes	A	and	B	in	the	figure	below	have	node	C	as	a	mutual	
friend,	so	according	to	this	hypothesis	the	edge	between	A	and	B	will	be	more	likely	to	
appear:	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

14	

	
We	can	create	simulation	models	representing	this	hypothesised	network	creation	process	
and	the	random	process,	and	compare	how	the	resulting	networks	differ.	Can	observed	
friendship	relationships	be	reproduced	through	a	random	process?	Can	they	be	better	
reproduced	through	another	hypothesised	process?	What	are	the	structural	features	of	the	
networks	arising	from	the	hypothesis?	

Deciding	how	to	connect	nodes	through	edges	in	your	network	will	depend	entirely	on	your	
research	aims	and	context.	To	think	about	what	might	be	the	most	appropriate	way	of	
creating	edges	in	your	context	you	could	ask	yourself	the	following	questions:	

• Why	did	I	decide	to	make	a	network	model?	
• What	are	the	nodes	in	my	network?	
• What	are	the	edges	in	my	network?	
• Are	nodes	and	edges	taken	from	empirical	observations?	
• Will	the	network	model	represent	a	hypothetical	scenario	that	will	be	compared	

with	empirical	observations?	
• Why	are	relationships	important	in	my	research	context?	
• How	are	relationships	dependent	on	each	other?	
• What	kinds	of	configurations	or	patterns	of	edges	are	important?	
• What	are	my	hypotheses	about	how	edges	are	created?	

9. Create	edges	
Relationships	in	Netlogo	are	called	‘links’	and	they	can	be	used	in	a	similar	way	as	‘turtles’.	
They	can	be	either	undirected	in	which	case	network	scientists	refer	to	them	as	‘edges’,	or	
they	can	be	directed	which	are	commonly	called	‘arcs’.	

We	will	create	a	new	breed	of	undirected	‘links’	called	‘edges’.	In	the	Code	tab	below	the	
previous	breed	add	the	following:	

undirected-link-breed [edges edge]

Now	that	we	have	created	a	breed	we	can	start	implementing	the	procedure	to	create	an	ER	
random	graph	model.	We	will	do	this	in	several	steps,	slowly	building	up	the	lines	of	code.	

In	the	setup	procedure,	add	a	new	procedure	to	connect	nodes	after	the	layout	of	the	
nodes:	

connect-nodes

	 	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

15	

Your	model	should	now	look	like	this:	
breed [nodes node]
undirected-link-breed [edges edge]

to setup
 clear-all
 set-default-shape nodes "circle"
 create-nodes num-nodes
 layout-circle sort nodes max-pxcor - 1
 connect-nodes
 reset-ticks
end

When	you	click	the	error	checker	it	will	give	you	an	error	saying	‘connect-nodes’	has	not	
been	defined.	We	will	now	add	a	new	procedure	called	connect-nodes	below	the	setup	
procedure:	

to connect-nodes
end

This	will	resolve	the	error	message.	

As	a	first	step	we	will	add	the	following	command	in	this	new	procedure:	
to connect-nodes
 repeat 100
 [
 ask one-of nodes [create-edge-with one-of other nodes]
]
end

This	code	will	select	100	nodes	randomly	in	turn	and	each	node	will	be	asked	to	create	an	
edge	with	another	randomly	selected	node.	

Note	that	the	normal	command	for	creating	links	in	Netlogo	is	create-link-with.	But	
because	we	have	created	a	breed	called	edges,	we	can	modify	this	to	create-edge-with.	
Have	a	look	at	the	Netlogo	dictionary	for	more	information:	
https://ccl.northwestern.edu/netlogo/docs/	.	

However,	now	when	you	click	the	setup	button	on	the	Interface	tab	you	will	get	a	weird	
network	where	edges	seem	to	cross	the	borders	of	the	interface	window:	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

16	

	
This	happens	because	by	default	the	Netlogo	‘World’	will	wrap	around	the	horizontal	and	
vertical	edges.	This	does	not	make	much	sense	when	making	a	network	model!	At	the	very	
least	it	is	not	helpful	for	visual	exploration.	To	avoid	the	edges	from	crossing	these	
boundaries,	right-click	the	interface	window,	select	Edit,	and	in	the	Model	settings	window	
uncheck	the	boxes	for	‘World	wraps	horizontally’	and	‘World	wraps	vertically’:	

	
When	you	do	this,	the	network	will	look	something	like	this	(note	that	your	network	will	
look	different	because	the	edges	are	randomly	created):	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

17	

	
We	now	need	to	add	a	number	of	features	to	make	this	a	real	ER	model.	The	current	code	
still	allows	for	pairs	of	nodes	to	be	connected	that	are	already	connected,	and	the	number	
of	edges	(currently	100)	should	not	be	hard-coded	but	rather	reflect	a	desired	feature	like	
the	desired	density	of	the	network.	Network	density	is	defined	as	the	fraction	of	the	number	
of	edges	that	are	present	to	the	maximum	possible	number	of	edges	in	the	network.	

First,	we	will	ask	nodes	to	only	consider	creating	an	edge	with	a	node	that	it	is	not	yet	
connected	to,	by	modifying	the	edge	creation	line	to	this:	

ask one-of nodes
[create-edge-with one-of other nodes with [edge-with myself = nobody]]

In	this	code,	‘myself’	refers	to	the	node	that	does	the	asking,	i.e.	the	node	we	select	in	the	
first	line	of	this	code.	

Second,	we	will	replace	the	100	to	only	create	the	number	of	edges	needed	to	create	the	
desired	density.	In	the	Code	tab	replace	repeat 100 with	the	following:	

repeat (target-density * (((num-nodes * num-nodes) - num-nodes)) / 2)

This	is	a	calculation	of	density	in	undirected	networks.	The	maximum	number	of	edges	in	
such	a	network	can	be	calculated	as:	the	maximum	number	of	edges	is	the	number	of	nodes	
times	the	number	of	nodes,	minus	the	number	of	nodes	(i.e.	nodes	cannot	be	connected	to	
themselves),	and	divided	by	two	(i.e.	edges	are	not	directed:	in	directed	networks	there	are	
double	as	many	maximum	links	because	they	can	go	in	two	directions).	Since	the	density	
measure	represents	a	certain	fraction	of	this	maximum	number	of	edges,	we	multiply	it	by	
the	variable	target-density,	which	represent	the	density	we	desire	for	our	network:	0	
represents	no	edges,	0.5	represents	half	the	maximum	number	of	edges	being	present,	1	
represents	all	the	maximum	number	of	edges	being	present.	

When	you	click	the	error	checker	you	will	notice	an	error	because	we	have	not	yet	defined	
the	variable	target-density.	We	will	add	this	variable	in	the	Interface	tab	as	a	slider:	

• Make	sure	‘Slider’	is	selected	in	the	dropdown	box.	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

18	

• Click	the	‘Add’	button.	
• Click	in	the	white	space	below	the	‘num-nodes’	slider.	A	window	will	appear.	
• Enter	target-density	in	the	‘Global	variable’	field.	The	minimum	will	be	0,	the	

increment	0.05,	the	maximum	1	and	the	Value	(default	value)	0.5.	Click	OK.	

	
The	error	message	will	be	resolved.	

Now	when	you	click	the	setup	button	your	network	will	always	have	only	so	many	edges	as	
required	to	reach	the	desired	density.	For	example,	if	your	network	has	40	nodes	and	your	
desired	density	is	0.5	then	you	will	create	390	edges:	

0.5 ∗
40 ∗ 40 − 40

2
= 390	

Note:	if	you	get	a	‘Runtime	Error’	at	this	point,	click	‘Dismiss’.	We	will	resolve	this	error	
later.	

However,	you	don’t	know	how	many	edges	there	are	until	you	count	them!	Neither	do	we	
know	whether	the	network	actually	has	the	correct	density	until	we	calculate	it.	There	are	a	
few	ways	we	could	do	this:	using	the	Command	Center	or	using	monitors.	

In	the	Command	Center	command	line	at	the	bottom	of	the	Interface	tab	write	the	
following:	

Show count edges

The	result	will	appear	in	the	Command	Center	window:	

	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

19	

A	more	convenient	way	to	count	the	edges	is	to	add	a	monitor	that	will	show	you	the	
number	of	edges.	In	the	Interface	tab	do	the	following:	

• Select	Monitor	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	will	be	reported.	
• Write	count edges	in	the	‘Reporter’	box,	set	decimal	places	to	1	(there	should	be	no	

decimals	but	it	is	good	to	add	this	for	error	checking:	if	you	see	a	decimal	number	in	
a	reporter	window	where	you	don’t	expect	it,	you	know	you	did	something	wrong).	

	
When	you	click	the	setup	button	you	will	automatically	see	the	number	of	edges	in	the	
monitor	box	you	just	created.	

Now	we	will	create	a	monitor	for	the	density.	In	the	Interface	tab	do	the	following:	

• Select	Monitor	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	will	be	reported.	
• Write	count edges / (((num-nodes * num-nodes) - num-nodes) / 2)	in	the	

‘Reporter’	box,	set	decimal	places	to	2,	and	set	the	Display	Name	to	‘density’	
(otherwise	the	display	name	of	this	monitor	will	be	the	entire	command	we	entered	
in	the	Reporter	box).	This	command	calculates	the	fraction	of	the	number	of	edges	
that	are	present	over	the	maximum	number	of	edges.	The	number	that	this	monitor	
gives	you	should	therefore	be	the	same	as	the	setting	of	the	target-density	variable.	
If	it	is	not,	then	you	know	you	did	something	wrong	so	you	can	search	for	the	
problem	and	fix	it.	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

20	

	
However,	there	is	a	problem	with	this	code.	When	you	put	the	target-density	variable	high	
then	you	will	often	get	a	‘Runtime	Error’.	This	Error	is	very	informative	and	will	help	us	
resolve	it.	It	highlights	the	part	of	the	code	where	the	problem	lies	and	tells	us	it	cannot	find	
another	turtle	(i.e.	node)	that	fits	the	criteria:	

	
The	error	tells	us	that	we	are	asking	a	node	to	identify	another	node	it	is	not	yet	connected	
to,	when	such	a	node	does	not	exist:	i.e.	the	asking	node	is	already	connected	to	all	other	
nodes.	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

21	

We	resolve	this	error	by	specifying	that	we	will	only	ask	nodes	that	are	not	yet	connected	to	
all	other	nodes,	by	adding	the	following	code:	

ask one-of nodes with [count edge-neighbors < (num-nodes - 1)]

The	connect-nodes	procedure	will	now	look	like	this:	
to connect-nodes
 repeat (target-density * (((num-nodes * num-nodes) - num-nodes)) / 2)
 [
 ask one-of nodes with [count edge-neighbors < (num-nodes - 1)]
 [create-edge-with one-of other nodes with [edge-with myself = nobody]]
]
end

Note:	in	Netlogo	we	call	a	pair	of	nodes	that	are	connected	link-neighbors,	but	since	we	
created	a	breed	called	edges	we	call	can	use	the	command	edge-neighbors.	

Save	your	model!	

10. Probability	of	edge	creation	
In	order	to	get	an	ER	model	we	need	to	change	one	final	thing:	edges	need	to	be	created	
with	a	certain	probability.	In	our	current	code	a	pair	of	nodes	is	randomly	selected	and	
connected,	whereas	in	an	ER	model	this	pair	is	only	connected	with	a	certain	probability.	
Being	able	to	attach	probabilities	to	the	creation	of	edges	is	very	important	and	useful	when	
you	want	to	express	your	own	hypotheses	of	network	creation.	For	example,	in	the	
friendship	network	hypothesis	mentioned	above	we	stated	that	the	probability	of	some	
edges	being	created	is	higher	than	that	of	others:	people	with	mutual	friends	will	be	more	
likely	to	become	friends	themselves.	

Here	we	will	introduce	a	simple	method	of	creating	edges	with	a	probability	variable	that	
you	can	manipulate	to	represent	your	hypothesis	of	network	creation.	

First,	we	modify	the	connect-nodes	procedure	to	only	create	an	edge	if	a	random	floating	
point	number	between	0	and	1	is	smaller	than	the	new	variable	edge-probability:	
 repeat (target-density * (((num-nodes * num-nodes) - num-nodes)) / 2)
 [

ask one-of nodes with [count edge-neighbors < (num-nodes - 1)]
 [if random-float 1 < edge-probability
 [create-edge-with one-of other nodes with [edge-with myself = nobody]]
]
]

We	now	get	an	error	message	because	the	new	variable	does	not	exist	yet,	so	do	the	
following	in	the	Interface	tab:	

• Select	Slider	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	slider	will	do.	
• Write	edge-probability	in	the	‘Global	variable’	box,	set	the	minimum	to	0,	the	

increment	to	0.05,	the	maximum	to	1	and	the	default	value	to	0.5.	Click	OK.	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

22	

	
If	this	variable	is	set	to	1	then	an	edge	will	always	be	created,	if	it	is	set	to	0	it	will	never	be	
created,	if	it	is	set	to	0.5	it	will	be	created	50%	of	times.	

When	you	click	the	setup	button	now	you	will	notice	something	is	wrong	thanks	to	your	
monitors:	the	density	in	the	monitor	is	not	the	same	as	the	target-density	slider	and	the	
count edges	monitor	reports	a	different	value	every	time	you	press	the	setup	button.	This	is	
because	this	process	is	repeated	a	fixed	number	of	times,	but	not	every	time	an	edge	is	
created.	

A	second	change	is	needed,	this	time	replacing	the	code	repeating	the	creation	of	edges.	We	
will	implement	this	by	calculating	how	many	edges	we	need	to	have	at	the	end	of	the	
procedure	(stored	as	the	variable	target-edges),	and	counting	how	often	an	edge	is	actually	
created	(we	let	a	variable	called	counter	start	at	0,	only	when	an	edge	is	created	do	we	add	
one	to	the	counter:	set counter counter + 1).	We	only	stop	the	procedure	if	we	have	
created	the	desired	number	of	edges	(we	use	the	while [counter < target-edges]	
command	to	repeat	the	process	until	the	variable	counter	equals	the	variable	target-edges).	

Modify	the	connect-nodes	procedure	to	read	like	this:	
to connect-nodes
let target-edges (target-density * (((num-nodes * num-nodes) - num-nodes)) /
2)

 let counter 0
 while [counter < target-edges]
 [
 ask one-of nodes with [count edge-neighbors < (num-nodes - 1)]
 [if random-float 1 < edge-probability
 [
 create-edge-with one-of other nodes with [edge-with myself = nobody]
 set counter counter + 1
]
]
]
End

When	you	press	the	setup	button	you	will	notice	that	the	monitors	report	what	they	should.		

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

23	

Save	your	model!	

11. Force-directed	layout	
Now	that	we	have	a	set	of	nodes	and	a	set	of	edges,	we	can	place	our	nodes	in	a	more	
interesting	way	than	just	a	circle:	we	can	use	layout	algorithms	to	highlight	structural	
features	of	the	network	to	aid	visual	exploration	of	the	network.	We	will	do	this	by	using	a	
popular	force-directed	layout	algorithm	called	the	Fruchterman-Reingold	layout	algorithm.	
It	is	sometimes	called	a	spring-embedded	layout	because	the	edges	act	like	springs	between	
the	nodes	that	repel	each	other.	More	on	force-directed	layout	algorithms	can	be	found	
here:	https://en.wikipedia.org/wiki/Force-directed_graph_drawing		

Netlogo	makes	it	incredibly	easy	to	implement	this.	We	will	create	a	new	procedure	called	
layout,	using	the	Netlogo	command layout-spring.	Add	the	following	code	below	the	
connect-nodes	procedure:	

to layout
 layout-spring nodes edges 0.2 5 1
end

Right-click	the	layout-spring	command	to	access	the	Netlogo	dictionary	and	find	out	what	
this	code	does.	It	will	perform	the	layout	considering	the	agent-set	nodes	as	the	nodes	and	
the	link-set	edges	as	the	edges.	The	three	numbers	are	variables	of	the	algorithm	
determining	features	of	the	“springs”:	their	resistance,	length	and	repulsion.	

In	order	to	use	this	new	layout	procedure	we	need	to	add	a	button	to	the	Interface	tab:	

• Select	Button	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	button	will	do.	
• Write	layout	in	the	‘Commands’	box.	Click	OK.	

	
Now	you	can	press	the	layout	button	to	perform	the	layout.	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

24	

Note	that	this	algorithm	works	differently	from	the	circular	layout.	It	does	not	have	one	
single	‘best’	outcome,	but	instead	will	iteratively	change	the	position	of	one	node	after	
another	taking	into	account	the	“springs”	that	connect	nodes.	The	more	you	click	the	layout	
button,	the	more	the	nodes	will	find	a	suitable	position.	

This	algorithm	is	most	useful	for	visual	exploration	with	low	density	networks.	Try	to	set	
your	target-density	slider	low	and	perform	the	layout:	the	algorithm	will	reveal	interesting	
structural	features	that	are	hidden	in	the	circular	layout,	such	as	isolated	nodes,	nodes	with	
only	one	connection,	and	sets	of	nodes	that	are	all	tightly	connected	with	each	other.	

Randomly	created	networks	are	typically	very	dense	and	rarely	show	striking	structural	
features	in	force-directed	layouts.	However,	this	group	of	layout	algorithm	is	great	at	
revealing	structural	features	that	are	common	in	social	networks:	dense	clusters	and	
“bridging”	nodes	connecting	different	clusters.	

Try	changing	the	values	of	the	three	numbers	in	the	layout-spring	command.	You	will	
notice	that	the	effect	of	the	springs	works	differently.	By	changing	these	variables	you	will	
be	able	to	tailor	your	layout	algorithm	to	most	appropriately	highlight	those	structural	
features	of	your	network	you	want	to	explore	or	visualise.	Try	changing	the	values	in	such	a	
way	that	it	provides	a	more	interesting	representation	of	a	very	dense	random	network.	

Save	your	model!	

12. Network	measures	
We	already	introduced	three	important	measures	of	your	network	structure:	the	number	of	
nodes,	the	number	of	edges	and	the	network	density.	Now	we	will	calculate	and	report	two	
more	measures:	average	degree	and	average	shortest	path	length.	

The	degree	of	a	node	is	defined	as	the	number	of	edges	connected	to	this	node.	The	
average	degree	of	a	network	is	the	sum	of	the	degrees	of	all	nodes	in	this	network	divided	
by	the	number	of	nodes.	

A	shortest	path	between	a	pair	of	nodes	is	the	shortest	number	of	edges	that	need	to	be	
crossed	in	order	for	the	two	nodes	to	be	connected.	The	average	shortest	path	length	is	the	
average	of	the	shortest	paths	between	all	pairs	of	nodes	in	the	network.	

These	measures	will	reveal	aspects	of	the	structure	of	your	network	and	can	be	linked	to	
features	of	the	network	that	might	interest	you	in	your	research:	e.g.	information	is	shared	
much	faster	to	all	individuals	in	a	social	network	if	the	average	shortest	path	length	is	low.	

We	will	use	a	reporter	to	calculate	the	average	degree	in	the	Code	tab	and	then	display	it	in	
the	Interface	tab.	

Add	the	following	code	to	the	Code	tab	at	the	very	bottom:	
to-report report-av-degree
 let av-degree sum([count edge-neighbors] of nodes) / num-nodes
 report av-degree
end

In	this	code	we	calculate	the	variable	av-degree	as	the	sum	of	all	numbers	of	connections	
([count edge-neighbors] of nodes)	of	all	nodes	divided	by	the	number	of	nodes	(num-
nodes),	and	we	then	report	the	variable	av-degree	so	that	we	can	use	it	in	a	monitor	on	the	
Interface	tab:	

• Select	Monitor	from	the	dropdown	box.	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

25	

• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	monitor	will	do.	
• Write	report-av-degree	in	the	‘Reporter’	box,	write	‘Average	Degree’	in	the	‘Display	

Name’	box,	include	two	decimal	places.	Click	OK.	

	
To	calculate	the	average	shortest	path	length	we	will	use	a	Netlogo	extension	called	‘nw’.	In	
order	to	use	an	extension	in	a	Netlogo	model	we	need	to	add	the	following	at	the	very	top	
of	the	code:	

extensions [nw]

The	‘nw’	extension	needs	to	know	exactly	which	sets	of	agents	are	the	nodes	and	which	are	
the	links.	We	have	created	a	breed	of	nodes	and	a	breed	of	edges	and	we	will	work	with	
these.	You	can	specify	this	by	setting	the	so-called	‘context’	of	the	network	in	the	Code	tab.	
Add	the	following	to	the	setup	procedure	just	below	the	line	creating	the	nodes:	

nw:set-context nodes edges

We	will	now	create	a	reporter	in	the	Code	tab	that	reports	a	new	variable	average-
shortest-path-length	by	using	the	command	from	the	‘nw’	extension	nw:mean-path-length:	

to-report average-shortest-path-length
 report nw:mean-path-length
end

We	can	now	add	a	monitor	to	the	Interface	tab:	

• Select	Monitor	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	monitor	will	do.	
• Write	average-shortest-path-length	in	the	‘Reporter’	box,	include	two	decimal	

places.	Click	OK.	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

26	

	
Now	you	will	be	able	to	measure	the	average	degree	and	average	shortest	path	length	of	
any	network	you	create	in	your	model.	

Note	that	the	average	shortest	path	length	monitor	will	sometimes	report	‘false’.	This	
happens	when	your	network	has	isolated	nodes,	i.e.	nodes	that	are	not	connected	to	any	
other	nodes.	It	will	typically	occur	in	random	networks	with	a	low	density.	In	such	cases,	the	
algorithm	cannot	calculate	the	shortest	path	between	all	node	pairs	because	some	nodes	
are	not	connected.	

The	‘nw’	extension	was	here	used	in	a	very	simple	example	to	illustrate	how	extensions	can	
be	implemented	in	a	Netlogo	model.	The	‘nw’	extension	offers	a	huge	range	of	other	
techniques	that	will	enable	you	to	perform	the	most	common	network	science	tasks,	
including	some	of	the	things	we	have	implemented	manually	above.	Full	documentation	for	
the	extension	can	be	found	here:	

https://github.com/NetLogo/NW-Extension		

Advanced	task:	in	networks	with	isolated	nodes	you	could	still	calculate	the	average	
shortest	path	length	of	all	nodes	that	are	connected	in	the	largest	single	connected	
component,	by	creating	a	subset	of	nodes	that	only	includes	the	nodes	in	largest	connected	
component	and	calculating	the	average	shortest	path	length	for	these	only.	Give	it	a	try!	Use	
the	Netlogo	dictionary	and	the	‘nw’	extension	documentation.	

Save	your	model!	

13. Trading	pots	on	a	network	
When	performing	applied	network	science	research,	you	are	not	just	interested	in	creating	a	
certain	network	structure	but	rather	in	understanding	what	its	consequences	are	within	
your	research	context.	What	is	enabled	by	the	relationships?	What	are	the	processes	taking	
place	on	the	relationships?	The	flow	of	materials	or	ideas?	How	does	the	structure	of	the	
network	influence	this	flow?	Does	it	lead	to	a	particular	pattern,	like	distributions	of	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

27	

materials	or	the	rapid	spread	of	an	idea?	These	are	again	questions	that	you	need	to	ask	
yourself	at	the	outset	and	answer	in	light	of	your	research	context.	

In	this	section	we	will	introduce	a	very	simple	research	context	and	process:	trade	and	the	
distribution	of	pots	over	a	network.	

We	will	assume	all	our	nodes	are	traders	involved	in	the	trade	of	pottery,	and	they	are	able	
to	trade	with	each	other	if	they	are	connected	in	the	network.	We	will	give	all	traders	a	
certain	amount	of	pots	and	every	tick	(Netlogo	jargon	for	time	step)	all	pots	in	the	model	
will	be	considered	for	trade.	To	keep	it	simple,	we	will	just	assume	that	all	traders	want	to	
sell	the	pots	they	own,	want	to	obtain	new	items,	and	that	a	transaction	is	successful	with	a	
certain	probability.	

First,	we	will	create	a	variable	for	the	nodes	(the	traders)	called	‘pots’	by	adding	the	
following	to	the	top	of	the	Code,	just	below	where	we	define	the	breeds:	

nodes-own [pots]

Second,	we	will	give	all	nodes	pots	during	the	setup	procedure	by	adding	the	following	code	
just	after	the	creation	of	nodes:	

ask nodes [set pots num-pots]

Note	that	we	just	mentioned	a	new	variable	called	num-pots,	so	Netlogo	will	give	us	an	error	
and	we	will	need	to	add	a	slider	to	control	this	variable	in	the	Interface	tab:	

• Select	Slider	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	slider	will	do.	
• Write	num-pots	in	the	‘Global	variable’	box,	set	the	minimum	to	0,	the	increment	to	

1,	the	maximum	to	100	and	the	value	to	50.	Click	OK.	

	
Now	when	you	click	the	setup	button	all	nodes	will	be	given	as	many	pots	as	defined	by	the	
variable	num-pots.	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

28	

Third,	we	will	create	a	new	procedure	that	determines	what	processes	will	take	place	when	
the	model	runs.	So	far	we	have	restricted	ourselves	to	determining	how	the	model	is	set	up,	
and	now	we	will	determine	what	happens	after	that	for	every	tick	(time	step).	

Add	a	procedure	called	go	by	writing	at	the	bottom	of	your	code	the	following:	
to go
 tick
end

The	command	tick	will	increase	the	number	of	time	steps	of	the	model	by	one	every	time	
the	go	procedure	happens.	To	use	the	go	procedure	we	will	add	a	button	for	it	on	the	
Interface	tab:	

• Select	Button	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	button	will	do.	
• Write	go	in	the	‘Commands’	box	and	‘go	once’	in	the	‘Display	name’	box.	Click	OK.	

	
You	have	just	added	a	button	that	will	run	the	go	procedure	once	every	time	you	click	it.	If	
you	do	so,	you	will	notice	that	the	number	of	ticks	in	the	Interface	window	will	increase	by	
one	each	time.	You	might	also	want	to	create	a	second	button	that	runs	the	go	procedure	
continuously	until	you	ask	it	to	stop:	

• Select	Button	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	button	will	do.	
• Write	go	in	the	‘Commands’	box	and	‘go’	in	the	‘Display	name’	box.	Make	sure	the	

‘Forever’	box	is	ticked.	Click	OK.	

You	have	now	created	a	button	that	will	continuously	run	the	go	procedure.	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

29	

Fourth,	we	will	start	adding	more	interesting	trade-related	commands	to	the	go	procedure,	
beginning	with	a	count	of	the	total	number	of	pots	during	any	one	tick.	In	this	model	this	
sum	will	be	the	same	for	every	tick	within	a	single	setup,	but	we	will	add	this	sum	in	case	
you	decide	to	modify	the	model	by	allowing	pots	to	be	added	or	removed	from	the	model.	
Write	the	following	in	the	go	procedure	before	tick:	

let total-pots sum [pots] of nodes

Fifth,	now	that	we	know	how	many	pots	there	are	in	this	tick	we	can	repeat	trade	as	many	
times	as	there	are	pots	by	adding	the	following	code	in	the	go	procedure	immediately	after	
the	sum	of	all	pots:	

 repeat total-pots
 [
]

Every	command	that	we	now	add	within	these	brackets	will	be	repeated	as	many	times	as	
there	are	pots	at	the	start	of	that	tick.	

Sixth,	we	will	randomly	select	a	node	which	has	at	least	one	pot	and	is	connected	to	at	least	
one	other	node,	i.e.	a	node	that	can	trade:	

 repeat total-pots
 [
 ask one-of nodes with [pots > 0 and count edge-neighbors > 0]
 []
]

Seventh,	we	will	ask	this	node	to	perform	a	transaction	(sell	a	pot	to	another	node	it	is	
connected	to)	with	a	certain	probability.	We	will	use	the	same	technique	as	we	used	earlier	
for	implementing	probability:	checking	whether	a	randomly	selected	number	is	higher	or	
lower	than	a	variable	representing	the	trade	probability.	Add	the	following	to	the	ask	
command	we	just	wrote:	

 ask one-of nodes with [pots > 0 and count edge-neighbors > 0]
 [if random-float 1 < trade-probability
 []
]

This	code	will	perform	an	action	only	if	a	randomly	selected	floating	point	number	between	
0	and	1	is	smaller	than	the	value	we	set	for	the	variable	trade-probability.	Let’s	create	a	
slider	for	this	new	variable	in	the	Interface	tab:	

• Select	Slider	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	slider	will	do.	
• Write	trade-probability	in	the	‘Global	variable’	box,	set	the	minimum	to	0,	the	

increment	to	0.05,	the	maximum	to	1	and	the	default	value	to	0.5.	Click	OK.	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

30	

	
Finally,	we	will	add	the	transaction	that	will	take	place	if	a	randomly	selected	number	is	
lower	than	the	threshold	determined	by	the	trade-probability	variable.	Add	the	following	
to	the	if	command	we	just	wrote:	

 [if random-float 1 < trade-probability
 [set pots pots - 1
 ask one-of edge-neighbors
 [set pots pots + 1]
]
]

This	code	will	perform	a	transaction	by	first	reducing	the	number	of	pots	of	the	seller	(the	
randomly	selected	node),	then	it	will	randomly	select	one	of	the	other	nodes	this	node	is	
connected	to	(this	second	node	becomes	the	buyer),	and	finally	it	will	increase	the	number	
of	pots	the	buyer	owns	by	1.	

Your	complete	go	procedure	should	now	look	like	this:	
to go
 let total-pots sum [pots] of nodes
 repeat total-pots
 [
 ask one-of nodes with [pots > 0 and count edge-neighbors > 0]
 [if random-float 1 < trade-probability
 [set pots pots - 1
 ask one-of edge-neighbors
 [set pots pots + 1]
]
]
]
 tick
end

You	now	have	a	model	where	you	can	create	a	randomly	constructed	network	with	certain	
features,	you	can	apply	a	layout	algorithm	to	it,	and	you	can	have	the	nodes	trade	pots	with	
each	other.	

Save	you	model!	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

31	

14. Plots	of	pots	
At	the	moment	we	cannot	explore	the	trade	procedure	we	just	created	very	easily,	because	
we	do	not	have	anything	that	reports	its	effects.	Let’s	add	two	plots	that	tell	us	something	
about	the	network	and	the	trade	processes.	

First,	let’s	make	a	plot	showing	the	frequency	distribution		of	nodes’	degrees	in	the	
Interface	tab:	

• Select	Plot	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	Plot	will	do.	
• Write	‘Degree	distribution’	in	the	‘name’	box.	
• Click	on	the	yellow	pencil	to	modify	the	‘default	pen’.	A	new	window	will	open	

where	you	can	determine	what	this	pen	will	plot.	
• Set	the	‘Mode’	dropdown	box	to	‘Bar’,	set	the	‘Interval’	to	1.0,	and	write	the	

following	code	in	the	‘Pen	update	commands’	box:		
let max-degree max [count edge-neighbors] of nodes
set-plot-x-range 0 (max-degree + 1)
histogram [count edge-neighbors] of nodes

• Click	OK	twice.	

	
This	plot	will	create	a	histogram,	displaying	the	frequency	distribution	of	the	degree	(the	
number	of	edges)	of	nodes.	On	the	X	axis	we	see	the	degree,	and	on	the	Y	axis	we	see	the	
number	of	nodes	that	have	a	certain	degree.	

One	of	the	most	interesting	things	to	explore	would	be	to	see	how	many	pots	each	trader	
has:	the	distribution	of	pots.	We	will	create	a	plot	that	shows	us	this	in	the	Interface	tab:	

• Select	Plot	from	the	dropdown	box.	
• Click	the	‘Add’	button.	
• Click	anywhere	in	the	white	space.	A	new	window	will	appear	where	you	can	

determine	what	the	Plot	will	do.	
• Write	‘Distribution	of	pots’	in	the	‘name’	box.	

Network	Science	with	Netlogo	 	 version	13/09/2018	
	

32	

• Click	on	the	yellow	pencil	to	modify	the	‘default	pen’.	A	new	window	will	open	
where	you	can	determine	what	this	pen	will	plot.	

• Set	the	‘Mode’	dropdown	box	to	‘Bar’,	set	the	‘Interval’	to	1.0,	and	write	the	
following	code	in	the	‘Pen	update	commands’	box:		

let max-pots max [pots] of nodes
set-plot-x-range 0 (max-pots + 1)
histogram [pots] of nodes

• Click	OK	twice.	

	
This	plot	will	create	a	histogram,	displaying	the	distribution	of	pots	among	nodes.	On	the	X	
axis	we	see	the	number	of	pots,	and	on	the	Y	axis	we	see	the	number	of	nodes	that	own	a	
certain	number	of	pots.	

Now	you	can	start	exploring	the	interesting	behaviour	of	this	model:	the	interaction	
between	the	network	structure	and	the	trade	process.	

What	shape	does	the	distribution	of	pots	have	for	a	dense	network?	
What	does	it	look	like	for	a	sparse	network?	
Does	this	change	over	long	time	periods?	
How	does	the	probability	of	trade	affect	this	distribution?	

If	you	consider	the	amount	of	pots	a	trader	has	as	their	wealth,	how	would	you	interpret	
these	different	results?	
Under	what	conditions	do	you	see	a	more	equal	wealth	distribution?	
Under	what	conditions	do	you	see	a	less	equal	wealth	distribution?	
Do	these	different	distributions	correlate	with	certain	network	structures	as	defined	by	the	
average	degree,	the	degree	distribution,	and	the	average	shortest	path	length?	
Is	the	wealth	of	a	node	dependent	on	its	position	in	the	network,	such	as	its	degree?	

Additional	advanced	exercise:	Try	changing	the	way	nodes	are	given	pots,	by	giving	some	
nodes	more	pots	than	others,	or	letting	the	distribution	of	pots	over	nodes	follow	a	normal,	
uniform	or	exponential	distribution.	How	does	this	affect	the	running	of	the	model?	Can	you	
identify	a	correlation	between	the	number	of	pots	a	node	starts	out	with	in	life	and	how	
many	pots	they	manage	to	keep	and	obtain?	

