
Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 1	

Importing	a	Roman	Transport	network	with	Netlogo	
By	Tom	Brughmans	
First	version:	Summer	2018	
This	version	created	01/09/2018	
Netlogo	version	used:	6.0.1	
Extension	used:	nw	(pre-packaged	with	Netlogo	6.0.1)	
https://ccl.northwestern.edu/netlogo/6.0-BETA1/docs/nw.html		
Cite	this	tutorial	as:	
Brughmans,	T.	(2018).	Importing	a	Roman	Transport	network	with	Netlogo,	Tutorial,	
https://archaeologicalnetworks.wordpress.com/resources/#transport		.	
	

	
	 	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 2	

1. Introduction	
This	tutorial	provides	an	introduction	to	downloading	open	Roman	datasets	via	
https://projectMERCURY.eu		and	importing	them	into	a	Netlogo	model.	We	will	use	the	
ORBIS	dataset	(http://orbis.stanford.edu/)	to	create	a	set	of	Roman	settlements	and	major	
routes	between	them.	We	will	analyse	the	network	using	the	techniques	in	the	nw	Netlogo	
extension.	This	tutorial	will	reveal	the	importance	of	checking	downloaded	open	data	for	
mistakes	and	how	you	can	correct	them.	

2. Conventions,	tips	and	assumed	knowledge	
This	tutorial	assumes	basic	knowledge	of	Netlogo	and	of	simulation.	It	is	recommended	to	
walk	through	the	introductory	tutorials	on	the	Netlogo	website	or	the	tutorial	on	Netlogo	
for	archaeologists	on	the	Simulating	Complexity	blog:		
https://simulatingcomplexity.files.wordpress.com/2014/07/dispersal_tutorial.pdf	
https://ccl.northwestern.edu/netlogo/docs/	
This	tutorial	will	also	refer	to	some	network	science	jargon,	concepts	and	techniques.	You	
can	get	a	basic	definition	of	all	of	these	from	the	glossary	on	my	blog:	
https://archaeologicalnetworks.wordpress.com/resources/#glossary	
Good	introductions	to	network	science	include	the	following:	

Brandes,	U.,	Robins,	G.,	McCranie,	A.,	&	Wasserman,	S.	2013.	What	is	network	
science?	Network	Science	1(01):	p.1–15.	
Newman,	M.E.J.,	2010.	Networks:	an	introduction,	Oxford:	Oxford	University	Press.	

Code	written	in	this	tutorial	will	be	formatted	as	in	the	following	example:	
breed [nodes node]

Save	your	project!	Do	this	regularly	and	use	multiple	versions	throughout	the	tutorial	so	
that	you	can	fall	back	on	an	earlier	version	at	any	time.	I	will	remind	you	regularly	
throughout	the	tutorial	to	save	your	project.	
	

If	you	are	familiar	with	Netlogo:	skip	to	section	6!	
	 	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 3	

3. Download	and	install	Netlogo	
Netlogo	is	open	source	software	and	can	be	downloaded	free	of	charge	for	Windows,	Mac	
OS	X	and	Linux.	
Go	to	https://ccl.northwestern.edu/netlogo/download.shtml	.	
Download	the	Netlogo	installer	(this	tutorial	uses	version	6.0.1).	
Run	the	installer	and	install	Netlogo.	

4. Netlogo	resources,	manual	and	interface	
Netlogo	has	great	documentation	about	all	its	features	and	code	in	its	user	manual:	
https://ccl.northwestern.edu/netlogo/docs/		
This	manual	includes	tutorials,	a	reference	to	the	software	functions,	a	dictionary	to	its	
programming	language,	documentation	of	its	extensions	and	much	more.	
Additional	external	resources	can	be	found	on	the	resources	page:	
https://ccl.northwestern.edu/netlogo/resources.shtml		
A	detailed	reference	to	Netlogo’s	Interface	can	be	found	here:	
https://ccl.northwestern.edu/netlogo/docs/	
This	tutorial	will	only	give	a	very	brief	introduction	to	the	key	elements	of	the	Netlogo	
interface	you	will	be	using	throughout	the	tutorial.	
	 	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 4	

When	you	open	Netlogo	it	should	look	something	like	this:	

	
It	has	three	tabs:	Interface,	Info,	Code.	
The	Interface	tab	is	where	you	watch	your	model	run.	Throughout	the	tutorial	you	will	add	
buttons	and	sliders	to	control	the	variables	of	your	model,	and	you	will	add	monitors	and	
plots	to	inspect	what	your	model	is	doing.	You	can	speed	up	or	slow	down	the	simulation	
using	the	speed	slider	at	the	top	of	the	interface.	The	command	center	at	the	bottom	will	
display	messages	you	ask	the	model	to	produce,	and	you	can	also	use	it	to	give	to	
commands	to	the	model	from	the	interface	tab.	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 5	

	
The	Info	tab	is	where	you	describe	your	model	using	a	standardized	set	of	questions.	Adding	
this	information	when	you	share	your	model	with	other	is	crucial	to	enable	them	to	work	
with	your	model.	We	will	not	work	with	the	Info	tab	in	this	tutorial.	

	
The	Code	tab	is	where	you	write	and	store	the	code	for	the	model.	In	this	tutorial	we	will	be	
mainly	working	in	the	Code	tab.	A	useful	feature	is	the	Check	function	at	the	top	of	this	tab:	
click	this	to	let	Netlogo	check	your	code	for	errors.	If	it	finds	errors	then	you	will	be	guided	
to	the	error	and	asked	to	resolve	it	before	you	can	continue,	if	it	does	not	find	errors	then	
you	can	proceed	with	coding	or	viewing	your	model	in	action.	NOTE:	this	error	checker	only	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 6	

checks	whether	the	primitives	used	and	the	order	of	the	code	comply	with	the	Netlogo	rules	
(i.e.	the	code’s	vocabulary	and	grammar).	It	will	not	check	whether	the	code	does	what	you	
want	it	to	do,	so	getting	no	errors	is	no	guarantee	that	the	code	works	the	way	it	should	or	
the	way	you	think	it	does.	The	error	checker	will	always	need	to	be	used	alongside	other	
error	checking	techniques,	like	reporting	variable	values	and	checking	them	against	
expectations,	or	testing	submodels	independently.	

5. Netlogo	dictionary	
A	crucial	resource	when	coding	in	Netlogo	is	its	dictionary:	
https://ccl.northwestern.edu/netlogo/docs/		
For	this	tutorial,	you	will	find	the	section	on	‘Links’	in	the	Netlogo	dictionary	particularly	
useful,	as	well	as	the	documentation	of	the	‘nw’	extension.	
You	can	get	direct	access	(even	offline)	to	the	entry	about	a	particular	primitive	by	right-
clicking	it	and	selecting	Quick	Help.	

	

	
	 	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 7	

6. Create	a	working	folder	
Make	a	folder	on	your	computer	called	‘Roman-transport’.	All	data	we	will	use	and	the	
model	we	will	create	will	be	saved	in	this	folder.	When	importing	data	into	Netlogo	models,	
as	we	will	do	in	this	tutorial,	it	is	crucial	that	all	data	used	in	the	model	is	saved	in	the	same	
location	as	the	model	itself.	

7. Download	ORBIS	data	
ORBIS	is	the	Stanford	Geospatial	Network	Model	of	the	Roman	World	
(http://orbis.stanford.edu).	It	is	a	coarse-grained	representation	of	the	major	terrestrial	and	
maritime	routes	connecting	the	major	settlements	across	the	Roman	world.	Check	out	the	
ORBIS	website	if	you	want	to	learn	more	about	it,	or	read	the	following	publications:	

• http://orbis.stanford.edu/assets/Scheidel_64.pdf		
• http://orbis.stanford.edu/assets/Scheidel_59.pdf	

	
What	is	most	crucial	for	this	tutorial	is	that	the	ORBIS	model	can	be	reused	with	
accreditation	for	research	purposes.	It	offers	a	great	starting	point	for	studies	of	the	Roman	
world	that	concern	flows	of	goods,	ideas	and	people.	
	
Before	we	download	this	open	dataset	we	need	to	think	about	how	we	want	to	use	it	in	
Netlogo.	What	we	want	to	achieve	in	this	tutorial	is	to	have	an	agent-based	model	with	a	
network	representation	of	the	Roman	transport	system	where	nodes	represent	settlements	
and	edges	represent	routes.	It	will	therefore	be	best	to	download	the	network	data	version	
of	ORBIS.	
	
Go	to	the	MERCURY.eu	page	listing	open	Roman	datasets:	
https://projectmercury.eu/datasets/		
	
Scroll	down	the	list	and	navigate	to	‘Transport	System	(ORBIS)’.	You	will	notice	from	the	
description	of	this	resource	that	we	will	need	to	download	two	datasets:	a	list	of	
settlements/sites	and	a	list	of	routes.	

	
Click	the	link	to	download	ORBIS	Network	data	which	will	take	you	to	a	Stanford	webpage:	
https://purl.stanford.edu/mn425tz9757		
	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 8	

You	will	see	the	license	is	specified	as	CC-BY-3.0	which	means	you	can	copy,	redistribute,	
remix,	transform,	and	build	upon	the	material	for	any	purpose:	as	long	as	you	give	
appropriate	credit.	
https://creativecommons.org/licenses/by/3.0/		
	
Download	the	two	.csv	files	for	the	nodes	and	edges	in	this	network	(the	nodes	represent	
settlements	and	the	edges	represent	routes).	Right-click	each	file	and	select	‘Download	
Linked	File	As	…’	and	save	them	in	the	‘Roman-transport’	folder:	

	
A	.csv	file	is	a	comma	separated	value	file	in	which	each	line	represents	a	data	entry	and	
each	value	in	this	entry	is	separated	by	a	comma.	It	can	be	opened	with	a	text	editor	or	with	
a	spreadsheet	programme	like	Excel	to	view	it	as	rows	and	columns.	
	
The	edges	file	with	the	route	data	has	six	data	columns:	the	source	node	of	the	edge,	the	
target	node	of	the	edge,	the	length	of	the	route	in	km,	the	number	of	days	to	traverse	the	
route,	the	expense	of	doing	so,	and	the	route	type	(road,	coastal,	overseas,	…).	

	
	
The	nodes	file	with	the	settlement	has	four	data	columns:	a	unique	node	id,	the	settlement	
name	as	a	label,	the	X	and	Y	spatial	coordinates.	

	

8. Errors	in	the	data	
it’s	crucial	to	always	thoroughly	check	downloaded	open	data	to	identify	mistakes	and	
omissions	and	to	get	an	idea	of	how	the	data	should	be	critically	used	in	your	study.	Look	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 9	

through	the	nodes	file	and	try	to	find	some	of	the	settlements	that	have	“x”	as	their	label.	
Notice	any	mistakes?	They	don’t	have	any	coordinate	information!	In	fact,	there	are	a	few	
issues	with	this	nodes	file.	First,	the	X	and	Y	coordinates	are	correct	for	some	but	switched	
around	for	most	settlements.	Second,	the	crossroads	in	the	ORBIS	model	that	are	not	towns	
do	not	have	spatial	coordinates	associated	with	them.	For	these	reasons	it	is	advised	to	use	
another	settlement	dataset	provided	by	the	ORBIS	team,	which	solves	most	issues	with	this	
file	(but	introduces	others,	wait	and	see…).	
	
Go	back	to	the	Roman	open	datasets	page	of	MERCURY.eu	and	now	click	‘All	sites	in	Orbis’:	

	
This	will	take	you	to	the	Github	page	where	this	data	is	stored:	
https://github.com/emeeks/orbis_v2/blob/master/sites_extended.csv	
To	download	this	file,	click	‘Raw’,	select	all	of	the	data	(CTRL+A)	and	copy	it	(CTRL+C).	Open	
a	text	processor	such	Notepad	or	TextEditor	and	paste	the	data	into	a	new	file	(CTRL+V).	
Now	save	this	new	file	as	‘settlements.csv’	in	the	‘Roman-transport’	folder.	

	
When	you	open	this	file	in	spreadsheet	software	you	will	notice	it	holds	more	information	
than	the	original	nodes	file:	a	unique	settlement	identifier	(which	will	allow	you	to	use	this	
file	as	a	replacement	for	the	original	nodes	file),	a	label	with	the	settlement	name,	a	rank	
based	on	the	Barrington	Atlas	ranking	of	settlements	in	the	Roman	World,	spatial	
coordinates,	cost	and	target	columns	which	are	empty,	the	Roman	province	the	settlement	
was	in	and	the	modern	country.	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 10	

	
	
Using	this	settlements	file	instead	solves	the	two	issues	mentioned	above	but	it	introduces	
another	one:	there	are	eight	nodes	with	routes	in	the	route	file	that	are	not	included	in	the	
new	settlements	file.	To	solve	this	issue	we	could	look	them	up	in	the	original	nodes	file	and	
add	them	to	the	spreadsheet.	However,	such	a	modification	to	the	input	data	used	is	
difficult	to	identify	by	colleagues	who	aim	to	use	your	model	and	reproduce	its	results.	It	
would	be	much	better	if	we	could	state	explicitly	in	any	publication	we	write	about	the	
model	that	the	downloaded	open	access	datasets	are	imported	into	the	model	as	they	are,	
and	that	all	changes	to	this	data	is	formally	documented	in	the	code	of	the	model.	In	section	
12	below	we	will	do	just	that.	

9. Prepare	ORBIS	data	for	Netlogo	
Now	that	we	have	downloaded	the	ORBIS	data,	we	need	to	explore	how	best	to	import	it	
into	Netlogo.	The	easiest	way	to	import	a	network	is	to	use	Netlogo’s	‘nw’	extension	which	
has	a	feature	for	importing	the	network	.graphml	file	format.	Such	a	file	can	be	very	easily	
created	in	network	software	using	the	files	you	just	downloaded.	You	could	import	the	
edges	table	into	software	such	as	Visone,	and	then	attach	the	settlements.csv	file	as	node	
attribute	data.	A	crucial	additional	requirement	of	the	‘nw’	extension	is	to	create	in	this	
.graphml	file	an	edge	attribute	called	‘BREED’	and	to	set	this	value	for	each	edge	to	‘routes’.	
Doing	so	will	allow	us	to	map	these	edges	to	a	directed	link	breed	called	‘routes’	(see	
below).	Since	describing	this	process	in	detail	is	outside	the	scope	of	the	current	tutorial,	
this	has	already	been	done	for	you	(see	this	archaeological	tutorial	using	the	Visone	
software	for	a	detailed	explanation	of	how	to	create	such	a	network	file:	
https://archaeologicalnetworks.wordpress.com/resources/#Visone).	
	
Go	to	the	MERCURY.eu	tutorials	page	where	you	downloaded	this	tutorial,	and	download	
the	‘orbis.graphml’	file.	On	this	page	https://projectmercury.eu/tutorials/	find	the	tutorial	
‘Importing	a	transport	network’	and	click	the	download	link	under	‘Input	data’.	The	
orbis.graphml	file	can	be	found	in	the	downloaded	folder,	in	a	subfolder	called	‘data’.	When	
you	open	this	file	in	network	software	it	would	look	like	this:	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 11	

	

10. Import	Orbis	data	in	Netlogo	
Finally	we	can	open	Netlogo	6.0.1	for	the	first	time	in	this	tutorial!	
	
Save	a	new	model	as	‘Roman-transport.nlogo’	in	the	‘Roman-transport’	folder.	
	
Write	the	following	basic	code	to	create	a	model	that	uses	the	‘nw’	extension,	a	setup	
procedure	and	that	is	ready	to	include	turtle/link/global	variables:	

extensions [nw]

turtles-own []

links-own []

globals []

to setup
 clear-all
 reset-ticks
end

	
The	ORBIS	network	is	a	directed	network,	which	means	that	an	edge	from	A	to	B	is	a	
different	one	than	the	edge	from	B	to	A.	In	the	case	of	ORBIS	this	difference	was	introduced	
by	its	creators	because	of	the	differences	in	sailing	upstream	or	downstream	rivers,	or	in	the	
overseas	routes	taken.	To	ensure	this	feature	of	the	dataset	is	correctly	imported,	we	need	
to	create	a	directed	set	of	links.	This	can	be	done	by	creating	a	new	link	breed	called	
‘routes’.	Change	everything	above	the	setup	procedure	in	your	code	to	this,	adding	a	new	
breed	and	the	‘routes-own’	variable	placeholder:	

extensions [nw]

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 12	

directed-link-breed [routes route]

routes-own []

turtles-own []

links-own []

globals []

	
In	addition	to	the	nodes	and	edges,	we	also	want	to	import	all	attribute	information	
attached	to	the	nodes	and	edges:	settlement	coordinates,	names,	provinces,	etc.	To	ensure	
the	‘nw’	extension	imports	this	information	correctly,	we	have	to	define	these	attributes	as	
in	the	routes-own	and	turtles-own	attribute	lists	in	the	model:	

extensions [nw]

directed-link-breed [routes route]

routes-own [days expense km route-type]

turtles-own [node-id x y modern province rank]

links-own []

globals []

	
Subsequently	we	specify	what	sets	of	nodes	and	edges	we	will	use	with	the	‘nw’	extension	
(setting	the	context	in	this	way	is	a	requirement	of	the	‘nw’	extension),	and	we	upload	the	
‘orbis.graphml’	network	file	using	the	‘nw’	extension.	Change	your	setup	procedure	to	this:	

to setup
 clear-all
 nw:set-context turtles routes
 nw:load-graphml "orbis.graphml"
 reset-ticks
end

	
Note	that	because	‘orbis.graphml’	is	saved	in	the	same	‘Roman-transport’	folder	as	the	
model,	we	can	simply	refer	to	the	file	in	the	code	and	Netlogo	will	know	where	to	look	for	
the	file.	If	it	were	note	in	the	same	folder	then	we	would	have	to	specify	a	path	to	the	file.	
	
We	can	now	go	to	the	interface	tab	and	add	a	‘setup’	button:	click	on	the	‘interface’	tab,	
right-click	the	white	space,	select	button,	click	in	the	white	space	again,	in	commands	write	
‘setup’,	click	ok.	
	
Click	the	setup	button	to	see	whether	it	correctly	loads	the	network.	The	correct	result	
might	surprise	you:	it	looks	like	a	comet-shaped	white	spot	on	the	screen	like	this:	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 13	

	
Save	your	model!	

11. Position	Roman	settlements	
This	comet-shape	is	actually	a	good	sign,	it	means	the	ORBIS	network	is	correctly	uploaded	
and	as	a	result	all	nodes	and	their	labels	are	plotted	in	the	same	place	at	the	centre	of	the	
screen.	Perhaps	we	can	represent	this	network	in	a	way	that	shows	its	structure	a	bit	better	
by	using	layout	algorithms.	
	
The	simplest	layout	algorithm	is	to	place	all	nodes	in	a	circle	using	layout-circle.	Change	
the	setup	procedure	to	include	this:	

to setup
 clear-all
 nw:set-context turtles routes
 nw:load-graphml "orbis.graphml"
 layout-circle turtles 15
 reset-ticks
end

	
When	we	now	click	the	setup	button	we	will	see	a	circle,	but	all	edges	cross	over	the	sides	
of	the	Netlogo	world:	

	
To	stop	edges	crossing	the	sides	of	the	Netlogo	world	we	can	change	its	properties	by	right-
clicking	the	black	space,	clicking	‘Edit…’,	and	unticking	the	boxes	for	the	world	wrapping	
horizontally	and	vertically:	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 14	

	
This	circular	layout	gives	a	tidier	representation	of	the	network	but	it	is	not	particularly	
insightful.	Let’s	add	a	more	appropriate	geographical	layout	of	the	network	by	placing	each	
settlement	according	to	its	x	and	y	coordinates.	Remember	that	the	input	ORBIS	data	has	
the	variables	x	and	y	describing	their	geographical	coordinates.	We	have	given	the	turtles	in	
Netlogo	these	variables.	We	will	use	this	information	to	simply	plot	the	settlements	along	
the	x	and	y	axes	of	our	Netlogo	world.	This	is	a	simple	and	appropriate	way	of	displaying	this	
network	if	we	do	not	use	these	locations	in	our	analyses.	If	you	wish	to	perform	simulations	
that	take	the	distance	between	Roman	settlements	in	this	Netlogo	world	into	account,	then	
it	is	better	to	use	functions	from	the	Netlogo	GIS	extension	to	position	settlements.	
https://ccl.northwestern.edu/netlogo/docs/gis.html		
Look	here	for	a	good	tutorial	on	the	GIS	extension:	
https://simulatingcomplexity.wordpress.com/2014/08/20/turtles-in-space-integrating-gis-
and-netlogo/		
	
Go	to	the	code	tab,	remove	the	circular	layout	line,	and	add	code	to	the	setup	procedure	
setting	the	turtles’	locations	to	the	x	y	attributes:	

to setup
 clear-all
 nw:set-context turtles routes
 nw:load-graphml "orbis.graphml"
 ask turtles
 [
 setxy x y
]
 reset-ticks
end

	
When	you	click	the	setup	button	now	…	you	get	a	Runtime	Error!	The	error	says	that	the	
point	where	we	want	to	position	some	agents	is	outside	of	the	boundaries	of	the	world.	To	
solve	this	error	we	can	modify	the	boundaries	of	our	world	to	the	extent	needed	to	position	
all	points.	If	you	look	into	the	settlements.csv	input	file	you	will	notice	that	the	lowest	and	
highest	values	of	the	x	variable	are	roughly	-10	and	43,	and	for	the	y	variable	23	and	55.	We	
can	use	these	values	to	modify	the	boundaries	of	our	Netlogo	world.	
	
Right	click	the	black	space	of	the	Netlogo	world,	click	‘Edit’,	set	the	location	of	the	origin	to	
‘Edge’	and	set	the	coordinates	as	in	this	figure:	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 15	

	
Note	that	Netlogo	requires	the	origin	point	of	0,0	to	be	in	the	world	so	we	have	to	set	min-
pycor	to	0	rather	than	23.	
	
Save	your	model!	

12. Formal	documentation	of	data	modification	
When	you	press	the	setup	button	again	…	you	get	another	Runtime	Error!	

	
This	error	indicates	that	there	is	an	issue	with	some	of	the	values	of	the	x	and	y	variables	in	
the	input	data:	they	should	all	be	numbers	but	some	seem	to	be	empty	text	strings.	
	
This	error	revealed	another	issue	with	the	input	data,	the	issue	we	hinted	at	earlier	in	this	
tutorial:	some	of	the	settlements	do	not	have	x	and	y	coordinates.	In	section	8	above	we	
tried	to	correct	some	errors	with	the	nodes	dataset	by	using	a	different	nodes	input	file:	
settlements.csv.	However,	the	latter	does	not	hold	any	information	for	8	settlements	which	
is	why	Netlogo	cannot	position	some	of	the	settlements.	
	
Rather	than	correcting	this	mistake	by	modifying	the	input	data,	we	could	incorporate	our	
modifications	into	the	code	of	the	model	itself.	This	has	a	number	of	advantages:	

• The	open	access	version	of	the	dataset	used	is	imported	without	modification	as	
input	data	in	this	model.	There	is	no	need	for	colleagues	wishing	to	reproduce	our	
results	to	download	other	data	files.	

• All	modifications	made	to	this	input	data	are	detailed	formally	in	the	code:	they	are	
unambiguously	described.	

	
To	correct	this	mistake	in	the	model,	we	need	to	ensure	we	can	correctly	identify	each	node	
in	the	network.	The	input	network	orbis.graphml	has	a	node	attribute	called	‘node-id’	which	
is	the	unique	number	that	the	ORBIS	project	uses	to	refer	to	each	settlement.	We	imported	
this	into	Netlogo	correctly	by	including	it	as	a	turtle	attribute.	We	will	use	this	node-id	to	
identify	the	turtles	that	need	correcting.	
	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 16	

We	could	now	add	the	corrections	to	the	setup	procedure,	but	this	would	result	in	a	very	
long	and	messy	setup	procedure.	Better	to	swing	off	these	corrections	into	a	procedure	of	
their	own.	
	
Create	a	new	data-correction	procedure	and	include	in	it	the	lines	below	updating	the	x	y	
values	for	eight	turtles	(just	copy/paste	the	below	into	your	model).	Then	call	this	data-
correction	procedure	in	the	setup	procedure	just	after	you	load	the	network:	

to setup
 clear-all
 nw:set-context turtles routes
 nw:load-graphml "orbis.graphml"
 data-correction
 ask turtles
 [
 setxy x y
]
 reset-ticks
end

to data-correction

ask turtles with [node-id = "50317"] [set x 12.258 set y 41.78 set label
"Portus" set modern "Italy" set province "Italia" set rank 90]
ask turtles with [node-id = "50522"] [set x 16.21 set y 41.36 set label
"Aufidus" set modern "Italy" set province "Italia" set rank 60]
ask turtles with [node-id = "50572"] [set x 25.213 set y 37.412 set label
"Rheneia" set modern "Greece" set province "Graecia" set rank 60]
ask turtles with [node-id = "50457"] [set x 23.589 set y 35.232 set label
"Kriou Metopon" set modern "Greece" set province "Crete" set rank 60]
ask turtles with [node-id = "50786"] [set x 25.75 set y 36.75 set label
"Kerea" set modern "Greece" set province "Graecia" set rank 60]
ask turtles with [node-id = "50789"] [set x 26.459 set y 37.005 set label
"Lebinthos" set modern "Greece" set province "Graecia" set rank 60]
ask turtles with [node-id = "50790"] [set x 23.625 set y 37.875 set label
"Leros" set modern "Greece" set province "Graecia" set rank 60]
ask turtles with [node-id = "50792"] [set x 25.37 set y 37.44 set label
"Mykonos"set modern "Greece" set province "Graecia" set rank 60]

end

When	you	press	the	setup	button	again,	you	will	see	a	rough	outline	of	the	Roman	world,	
finally:	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 17	

	
Save	your	model!	

13. Visualise	transport	network	
Now	we	have	imported	and	corrected	the	ORBIS	transport	network,	we	can	modify	the	way	
we	visualise	it	in	Netlogo	to	get	get	a	better	idea	of	the	network	structure.	We	will	group	
the	code	of	all	these	visual	changes	in	a	new	“visualisation”	procedure	called	in	the	go	
procedure	just	after	the	nodes	are	positioned	in	their	XY	coordinates:	

to setup
 clear-all
 nw:set-context turtles routes
 nw:load-graphml "orbis.graphml"
 data-correction
 ask turtles
 [
 setxy x y
]
 visualise
 reset-ticks
end

to visualise
end

	
First	of	all,	we	clearly	need	to	do	something	about	those	labels.	We	will	store	a	turtle’s	label	
in	a	new	turtle	attribute town-name	and	we	will	add	a	line	in	the	visualise	procedure	to	
remove	all	labels:	

turtles-own [node-id x y modern province rank town-name]

to visualise
 ask turtles [set town-name label set label ""]
end

	
If	you	now	click	the	setup	button	the	network	will	be	much	clearer.	
	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 18	

Now	we	will	change	the	way	the	turtles	look.	They	represent	settlements	so	a	“house”	
symbol	would	be	more	appropriate:	

to visualise
 ask turtles [set town-name label set label "" set shape "house"]
end

	
There	are	a	lot	of	settlements	in	this	ORBIS	network,	678	to	be	precise.	The	parts	of	the	
Roman	Empire	with	particularly	dense	distributions	of	settlements	are	very	unclear,	which	
we	could	solve	by	changing	the	size	of	turtles.	Although	we	could	just	decrease	the	size	of	
turtles	overall,	it	would	be	good	to	use	turtle	size	to	represent	something	meaningful.	The	
settlements	have	a	“rank”	associated	with	them,	derived	from	their	Barrington	Atlas	size:	a	
generalizing	qualitative	indication	of	its	importance.	For	example,	in	the	following	excerpt	of	
map	52	Constantinopolis	has	a	higher	rank	than	Chalcedon,	which	has	a	higher	rank	than	
Hebdomon:	

	
The	ORBIS	team	converted	this	ranking	into	a	6	rank	scheme	with	the	following	values:	6	
(crossroads),	60,	70,	80,	90,	100	(the	latter	including	settlements	like	Roma	and	Alexandria).	
Assign	the	following	size	values	to	each	rank	(copy/past	the	following):	

to visualise
 ask turtles [set town-name label set label "" set shape "house"]
 ask turtles with [rank = 6] [set size 0.2]
 ask turtles with [rank = 60] [set size 0.3]
 ask turtles with [rank = 70] [set size 0.4]
 ask turtles with [rank = 80] [set size 0.7]
 ask turtles with [rank = 90] [set size 0.9]
 ask turtles with [rank = 100] [set size 2]
end

	
When	you	click	the	setup	button	the	resulting	network	is	still	not	particularly	clear	due	to	
the	many	turtle	colours.	We	can	use	the	information	about	Roman	provinces	included	in	
ORBIS	to	give	all	settlements	in	the	same	province	the	same	colour.	Create	a	new	provinces	
procedure	and	create	a	button	in	the	interface	to	trigger	this	procedure	(copy/paste	the	
following):	
	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 19	

to provinces
 ask turtles with [province = "Italia"] [set color red]
 ask turtles with [province = "Lusitania"] [set color gray]
 ask turtles with [province = "Mauretania Caesariensis"] [set color orange]
 ask turtles with [province = "Britannia"] [set color brown]
 ask turtles with [province = "Aquitania"] [set color yellow]
 ask turtles with [province = "Cyrenica"] [set color green]
 ask turtles with [province = "Dalmatia"] [set color lime]
 ask turtles with [province = "Belgica"] [set color turquoise]
 ask turtles with [province = "Lugudunensis"] [set color pink]
 ask turtles with [province = "Raetia"] [set color cyan]
 ask turtles with [province = "Tarraconensis"] [set color sky]
 ask turtles with [province = "Syria"] [set color blue]
 ask turtles with [province = "Noricum"] [set color violet]
 ask turtles with [province = "Narbonensis"] [set color 4]
 ask turtles with [province = "Aegyptus"] [set color magenta]
 ask turtles with [province = "Arabia Petraea"] [set color magenta]
 ask turtles with [province = "Cilicia"] [set color 93]
 ask turtles with [province = "Bithynia"] [set color 83]
 ask turtles with [province = "Germania Inferior"] [set color 73]
 ask turtles with [province = "Germania Superior"] [set color 63]
 ask turtles with [province = "Africa"] [set color 53]
 ask turtles with [province = "Alpes Cottidae"] [set color 43]
 ask turtles with [province = "Pannonia Superior"] [set color 33]
 ask turtles with [province = "Moesia Superior"] [set color 123]
 ask turtles with [province = "Sicilia"] [set color 13]
 ask turtles with [province = "Macadonia"] [set color 23]
 ask turtles with [province = "Graecia"] [set color 23]
 ask turtles with [province = "Crete"] [set color 93]
 ask turtles with [province = "Thracia"] [set color 103]
 ask turtles with [province = "Asia"] [set color 113]
 ask turtles with [province = "Moesia Inferior"] [set color 123]
 ask turtles with [province = "Cappadocia"] [set color 133]
 ask turtles with [province = "Corsica"] [set color 8]
 ask turtles with [province = "Armenia"] [set color 18]
 ask turtles with [province = "Palestine"] [set color 28]
 ask turtles with [province = "Numidia"] [set color 38]
 ask turtles with [province = "Dacia"] [set color 48]
 ask turtles with [province = "Panonia Inferior"] [set color 58]
 ask turtles with [province = "Judea"] [set color 68]
 ask turtles with [province = "Mauretania Tingitana"] [set color 78]
 ask turtles with [province = "Baetica"] [set color 88]
 ask turtles with [province = "Epirus"] [set color 98]
 ask turtles with [province = "Lycia"] [set color 108]
 ask turtles with [province = "Baleares"] [set color 118]
 ask turtles with [province = "Sardinia"] [set color 128]
 ask turtles with [province = "Cyprus"] [set color 138]
 ask turtles with [province = "Outside_Blacksea"] [set color 46]
end

When	you	click	the	setup	button	again	and	then	the	provinces	button	the	map	looks	much	
nicer	and	more	understandable.	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 20	

	
	
Now	we	will	turn	our	attention	to	the	routes.	ORBIS	recognises	ten	different	route-types	
which	are	also	imported	as	the	routes-own	attribute	route-type:	road,	coastal,	fastdown,	
fastup,	overseas,	downstream,	upstream,	slowcoast,	ferry,	slowover.	We	can	colour-code	
the	routes	depending	on	their	type.	Let’s	make	all	maritime	routes	blue,	all	terrestrial	routes	
dark	grey	and	all	river	routes	white.	Add	the	following	to	the	visualisation	procedure:	

 ask routes with [route-type = "road"] [set color 3]

	
 ask routes with [route-type = "coastal" or route-type = "overseas" or route-
type = "slowcoast" or route-type = "ferry" or route-type = "slowover"] [set
color sky]

	
 ask routes with [route-type = "fastdown" or route-type = "fastup" or route-
type = "downstream" or route-type = "upstream"] [set color white]

	
	
Save	your	model!	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 21	

14. Analysing	the	network	
In	this	section	we	will	explore	a	few	ways	in	which	you	can	analyse	the	network	you	just	
imported	into	Netlogo.	But	why	would	you	want	to	do	this	in	the	first	place?	There	are	a	few	
reasons	for	this:	

• Your	simulation	explores	the	flow	of	goods,	information	or	people	over	a	network	
(how	fast	could	the	message	of	the	death	of	an	emperor	be	spread	to	all	towns	in	
the	Roman	empire?).	

• Your	simulation	concerns	the	evolution	of	a	network	structure	(how	did	the	
infrastructure	of	the	Roman	road	network	change	through	time	and	what	are	the	
implications	of	these	changes	for	the	movement	of	people?).		

• Your	simulation	draws	on	attribute	information	of	settlements	or	roads	(how	was	
trade	between	places	dependent	on	the	theorised	rank	of	settlements?).	

• You	want	to	use	the	settlements	and	routes	as	a	visual	background	for	your	model.	
	
In	this	section	we	will	focus	on	examples	of	the	first	of	these	reasons,	using	network	science	
methods	included	in	the	‘nw’	extension	of	Netlogo.	
	
Let’s	explore	the	following	question:	how	fast	could	a	messenger	get	to	Rome	from	every	
town	in	the	empire?	We	can	explore	this	by	calculating	the	shortest	path	over	the	network	
from	every	settlement	to	Rome.	
	
Create	a	new	procedure	called	analysis	below	everything	else	in	your	code.	For	our	first	
analysis	we	will	use	the	command	nw:distance-to	to	calculate	the	distance	to	Rome	from	
each	turtle.	We	will	identify	the	closest	settlement,	the	furthest	settlement	from	Rome	and	
the	network	distance	from	Alexandria	to	Rome	(copy/past	the	following).	

to analysis-distance
 type "closest settlement: "

type [town-name] of one-of turtles with-min [nw:distance-to one-of turtles
with [town-name = "Roma"]] type ", "

print min [nw:distance-to one-of turtles with [town-name = "Roma"]] of
turtles

 type "furthest settlement: "

type [town-name] of one-of turtles with-max [nw:distance-to one-of turtles
with [town-name = "Roma"]] type ", "

print max [nw:distance-to one-of turtles with [town-name = "Roma"]] of
turtles

 type "distance Alexandria: "

ask one-of turtles with [town-name = "Alexandria"] [print nw:distance-to
one-of turtles with [town-name = "Roma"]]

end

	
Now	create	a	new	button	in	the	interface	to	perform	this	analysis.	When	you	click	it,	the	
command	centre	at	the	bottom	of	the	interface	will	show	you	the	results	of	the	analyses.	
Note	that	the	closest	town	to	Rome	in	the	network	is	…	Rome	itself.	
	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 22	

You	could	also	look	at	the	distribution	of	these	distances	to	Rome	by	creating	a	histogram	in	
the	interface	with	the	following	settings:	

	
	
Note	that	the	majority	of	settlements	is	at	a	distance	of	8-10	steps	removed	from	Rome.	
Perhaps	an	easier	way	to	explore	this	information	would	be	to	modify	the	colour	coding	to	
represent	these	results.	Create	a	new	visualise-distance	procedure,	and	create	a	button	on	
the	interface	to	trigger	this	procedure	(copy/paste	the	below):	

to visualise-distance
 ask routes [set color black]

let maximum-result max [nw:distance-to one-of turtles with [town-name =
"Roma"]] of turtles

 ask turtles
 [
 let my-result nw:distance-to one-of turtles with [town-name = "Roma"]
 set color ((((my-result / maximum-result) * 10) * -1) + 9.9)
]
end

This	code	first	calculates	the	maximum	result,	then	it	calculates	the	result	per	turtle,	and	
then	it	normalises	and	inverses	these	results	to	a	scale	from	0	to	9.9	(because	9.9	is	the	
code	for	the	colour	white	in	Netlogo)	where	9.9	is	represented	by	the	colour	white	(closest	
to	Rome)	and	0	by	black	(furthest	from	Rome).	
	
You	can	see	that	in	general	network	distance	to	Rome	increases	with	physical	distance	
although	coastal	towns	in	general	are	closer	than	terrestrial	towns.	

	
	
Save	you	model!	
	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 23	

But	these	results	don’t	really	represent	how	the	world	works:	what	matters	for	spreading	a	
message	is	not	so	much	the	number	of	routes	and	towns	you	need	to	pass	in	the	network,	
but	rather	the	time	or	cost	of	doing	so.	This	can	be	calculated	by	weighing	the	distance	
measure	by	the	route	attributes	km	(the	distance	of	the	route),	days	(the	time	it	takes	to	
traverse	the	route)	and	expense	(the	price	to	traverse	this	route).	
	
We	will	create	three	new	procedures	to	implement	the	analysis	of	network	distance	to	
Rome	weighted	by	distance,	time	and	expense.	We	will	use	the	nw:weighted-distance-to	
command	for	this,	and	we	will	create	buttons	for	each	of	these	three	procedures	on	the	
interface	(copy/paste	the	below	into	your	code	and	create	three	buttons):	
	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 24	

to analysis-distance-km
 type "closest settlement: "
 type [town-name] of one-of turtles with-min [nw:weighted-distance-to one-of
turtles with [town-name = "Roma"] km] type ", "
 print min [nw:weighted-distance-to one-of turtles with [town-name = "Roma"]
km] of turtles
 type "furthest settlement: "
 type [town-name] of one-of turtles with-max [nw:weighted-distance-to one-of
turtles with [town-name = "Roma"] km] type ", "
 print max [nw:weighted-distance-to one-of turtles with [town-name = "Roma"]
km] of turtles
 type "distance Alexandria: "
 ask one-of turtles with [town-name = "Alexandria"] [print nw:weighted-
distance-to one-of turtles with [town-name = "Roma"] km]
end

to analysis-distance-days
 type "closest settlement: "
 type [town-name] of one-of turtles with-min [nw:weighted-distance-to one-of
turtles with [town-name = "Roma"] days] type ", "
 print min [nw:weighted-distance-to one-of turtles with [town-name = "Roma"]
days] of turtles
 type "furthest settlement: "
 type [town-name] of one-of turtles with-max [nw:weighted-distance-to one-of
turtles with [town-name = "Roma"] days] type ", "
 print max [nw:weighted-distance-to one-of turtles with [town-name = "Roma"]
days] of turtles
 type "distance Alexandria: "
 ask one-of turtles with [town-name = "Alexandria"] [print nw:weighted-
distance-to one-of turtles with [town-name = "Roma"] days]
end

to analysis-distance-expense
 type "closest settlement: "
 type [town-name] of one-of turtles with-min [nw:weighted-distance-to one-of
turtles with [town-name = "Roma"] expense] type ", "
 print min [nw:weighted-distance-to one-of turtles with [town-name = "Roma"]
expense] of turtles
 type "furthest settlement: "
 type [town-name] of one-of turtles with-max [nw:weighted-distance-to one-of
turtles with [town-name = "Roma"] expense] type ", "
 print max [nw:weighted-distance-to one-of turtles with [town-name = "Roma"]
expense] of turtles
 type "distance Alexandria: "
 ask one-of turtles with [town-name = "Alexandria"] [print nw:weighted-
distance-to one-of turtles with [town-name = "Roma"] expense]
end

	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 25	

We	will	also	create	procedures	to	visualise	these	results	in	the	interface,	and	add	buttons	
for	each	of	these	three	new	visualisation	procedures	(copy/past	the	below	in	your	code	and	
create	three	buttons):	

to visualise-distance-km
 ask routes [set color black]
 let maximum-result max [nw:weighted-distance-to one-of turtles with [town-
name = "Roma"] km] of turtles
 ask turtles
 [
 let my-result nw:weighted-distance-to one-of turtles with [town-name =
"Roma"] km
 set color ((((my-result / maximum-result) * 10) * -1) + 9.9)
]
end

to visualise-distance-days
 ask routes [set color black]
 let maximum-result max [nw:weighted-distance-to one-of turtles with [town-
name = "Roma"] days] of turtles
 ask turtles
 [
 let my-result nw:weighted-distance-to one-of turtles with [town-name =
"Roma"] days
 set color ((((my-result / maximum-result) * 10) * -1) + 9.9)
]
end

to visualise-distance-expense
 ask routes [set color black]
 let maximum-result max [nw:weighted-distance-to one-of turtles with [town-
name = "Roma"] expense] of turtles
 ask turtles
 [
 let my-result nw:weighted-distance-to one-of turtles with [town-name =
"Roma"] expense
 set color ((((my-result / maximum-result) * 10) * -1) + 9.9)
]
end

	
We	have	four	different	ways	of	exploring	how	far	a	messenger	would	need	to	travel	from	
each	settlement	to	the	capital	of	Rome.	The	results	are	quite	interesting	and	show	
interesting	differences.	They	are	best	explored	by	dynamically	clicking	the	four	different	
boxes	to	identify	the	general	differences.	When	considering	physical	distances,	the	eastern	
part	of	the	Empire	is	very	distant	from	Rome	and	the	northern	part	much	closer.	When	
considering	distance	in	days,	the	port	towns	are	much	closer	than	terrestrial	towns,	and	this	
difference	is	much	more	pronounced	when	considering	distance	in	expense	(in	ORBIS	
maritime	transport	is	significantly	cheaper	per	km	that	is	terrestrial	transport).	
	
Save	your	model!	
	 	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 26	

Network	distance	to	Rome:	

	
	
Network	distance	to	Rome	weighted	by	physical	distance	in	km:	

	
	
	 	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 27	

Network	distance	to	Rom	weighted	by	time	in	days:	

	
	
Network	distance	to	Rome	weighted	by	expense:	

	
	 	

Importing	a	Roman	Transport	Model	in	Netlogo	 	 version	01-09-2018	

	 28	

15. Additional	exercises	
• Remove	all	towns	in	present-day	Greece	from	the	network	and	their	associated	

routes	using	only	code	and	not	modifying	the	input	data.	What	are	the	implications	
for	the	structure	of	the	network	and	the	flow	of	information	through	it?	

• Use	the	“modern”	node	variable	to	colour	code	all	nodes	according	to	the	present-
day	country	they	are	in.	Create	two	buttons	in	the	interface	that	allow	you	to	switch	
between	colours	of	modern	countries	and	Roman	provinces.	

• Establish	how	close	on	average	Rome	is	to	all	other	towns	by	using	the
nw:closeness-centrality	command.	Are	there	other	towns	that	(in	general)	are	
more	central	and	more	close	to	all	other	towns	than	Rome?	
	https://ccl.northwestern.edu/netlogo/6.0-BETA1/docs/nw.html		

